Index

Note: page references with suffix ‘f’ represent a Figure, and ‘t’ represents a Table

ABS
catalytic cracking of 78
heteroatoms from 77
pyrolysis of 330–1, 721
acetophenone, from catalytic cracking of PET 166, 167
acicular coke, production of 724
acid catalysts 46, 80–1, 118, 172, 195–6, 211
coprocessing of MWP/HVO blends 218–21
limitations 211
plastics-derived heavy oil cracked by 172–5
polyolefin cracking by 46–54, 82, 83f, 84f, 93f, 118, 195, 386
temperature effects 716
acid-catalyzed hydrolysis, of PET 647–8
acidity of catalysts 173t, 183t, 239
factors affecting 196, 239
measurement of 173, 196
for various catalysts 240t
acrylonitrile–butadiene–styrene copolymers see ABS
activated carbon
production of 552, 574, 657
regeneration of 573
activated carbon catalysts 48, 211
hydrocracking by 216
activated carbon/transition metal catalysts 84, 103f, 149, 211
see also Co-AC catalyst
activation energy calculations 227
degradation of plastics 231t, 617
effect of catalysts 197, 231
gasification reactions 182, 183t
hydrocracking of PE 62f, 63, 64f, 65f, 66
additives 4–5
effect on recycling 5, 14
environmental impact 376
advantages
 catalytic cracking 76–7, 194, 210, 226
 fluidized-bed reactors 135, 210, 436, 444, 547, 627
 free-fall reactors 615, 616, 617
 microwave heating 571, 582, 586
 pyrolysis 384–5, 431, 494, 532–3
 rotary kiln reactors 547, 551, 711
agricultural plastics
 conversion to diesel 412–13
 pyrolysis of 598
air pollution 133, 135, 193, 376, 532
AIST glycolysis process 644, 645f
Akzo fluidized-bed pyrolysis process 438t, 468–9
commercial status 469
Al-MCM-41 catalyst 395
alkyl aromatics
 from catalytic cracking of PE 49, 50, 50f, 51, 52f, 53–4, 76f, 152f
 of PS 54–9, 116
see also toluene
alumina
 catalytic cracking by 147, 148–9, 148t
see also silica–alumina catalysts
aluminium/plastic laminates, pyrolysis of 385, 573
aluminium–zinc composite, catalytic cracking by 96
Amat Ltd 586
American Plastic Council (APC), waste plastics sample 214
Amoco process 438t, 740t
amorphous silica–alumina (ASA) 80–1, 147
HDPE catalytic cracking by 148t
physicochemical properties 147, 240t
see also silica–alumina catalyst
AMRA fluidized-bed pyrolysis process 438t
antioxidants, in fuel oils 400, 402
Arabian crude oils, vacuum residues, properties 365
aromatics
in commercial gasoline 179t, 185f
from catalytic cracking
of mixed waste plastics 236, 236t
of PE 49, 50, 50f, 51, 52f, 53–4, 140, 143f, 145f, 148t, 151–2, 151f
of PS 54–9, 151f
of pyrolytic waxes 213t
from heavy-oil conversion 178f, 179f, 184, 185f
from pyrolysis
of PET 266
of PS 262, 307–8
of PVC 264, 308–9
see also PONA distributions
aromatization reactions 238, 735
Arrhenius equation 227, 228
Arrhenius plots, catalytic cracking of plastics-derived heavy oil 182f
Asia, recycling of PET bottles 642t
asphaltenes 365
amount in vacuum residues 365t
removal from distillation residues 366
Association of Plastics Manufacturers in Europe (APME) 36, 38
Ateklab free-fall reactor
experimental procedure 611–12
LDPE pyrolysis using 613–17
PS pyrolysis using 617–20
set-up 610–11
Atkinson–McCaffrey kinetic model 228
attrition index, catalysts 718–19
auger kiln reactors 515, 522, 550
see also Conrad process
autoclave reactors 16t, 117, 144, 195
automobile shredder residue (ASR) 33–4
collection of 26
composition 557
feedstock recovery from 34
pyrolysis 329–31
fixed-bed 441t
fluidized-bed 440t, 466, 469, 470
fuels produced 278t, 279t, 331
rotary kiln 442t, 443t, 557
see also shredder light fractions
base-catalyzed hydrolysis, of PET 648–9
BASF process 17, 27–8, 122, 368, 369f, 439t, 740t, 741, 748
batch reactors
catalytic cracking in 86, 195
pyrolysis in 289t, 290t, 393–4, 710–11
Battelle fluidized-bed pyrolysis process 438t, 468
BC-Pyrocom rotary kiln 555t, 558–9
Beijing Roy Environment Technology Company see Royco process
Belgium, packaging waste data 33t
benzene
from catalytic cracking
of PE 76f
of PS 54, 55f, 56, 59, 116
from pyrolysis
of PET 266
of PS 618, 619f
of PVC 264
benzoic acid, from PET cracking 166, 167, 329
Bergius Pier hydrogenation technology 30, 118
Berlin Consult see BC-Pyrocom rotary kiln
beta zeolite catalyst
cracking of olefins 149, 495
physicochemical properties 80t, 240t
β-scission
in catalytic cracking 51, 57–8, 75, 115, 211, 237, 243
in pyrolysis 75, 320, 715f
bifunctional catalysts 132–3, 214, 241–3
reaction mechanisms 132–3, 214
biomass
coa-gasification with plastics 120
gasification of 438t, 468
pyrolysis of 274, 608
bis-2-hydroxyethylene terephthalate
formation of 643, 644
polycondensation into PET 644
bituminous coal, devolatilization of 606, 607
BKMI rotary kiln process 554t
blast furnaces, plastics waste used in 8, 20, 23, 30, 37, 368–9, 669t, 704
Blowdec depolymerization process 429–30
boiling point distributions, liquid products 203–4, 352f, 376
bond energies

INDEX

carbon–carbon bond 596, 635
carbon–fluorine bond 635
carbon–hydrogen bond 635

BP fluidized-bed pyrolysis process 28–30, 122, 438t, 467–8, 738, 739t
economic considerations 30, 468
operating experience 467–8
preliminary experiments in Hamburg 476, 486t
products 29, 122, 468

typical input specification 392t

British Gas/Lurgi slagging gasifier 277
brominated fire/flame retardant materials
high-impact polystyrene see HIPS-Br
thermal degradation of 339–40, 558, 721

Brönsted acid sites on catalysts 51, 76, 81, 147, 196, 219
bubbling fluidized beds 436
comparison with other reactor types
446–9t
gasification in 276, 438t
pyrolysis in 394, 438t, 440t, 467
effect of process variables on products 458–61t
of mixed plastics 458t, 459t, 464–6
zones 452–3, 453f
butadiene rubber, pyrolysis products 333
by-products
plastics pyrolysis 14–15
coke formation 15
effects of additives 14
effects of hetero-atoms 14
secondary reactions 15

C-NP gram, pyrolysis oils 687f
calcium carbonate carbon composite (Ca-C)
sorbent
adsorption capacity 511t
effect of inlet HCl concentration 512–13
effect of particle size 513, 513f, 514t
effect of temperature 511–12, 512f
dechlorination of PVC/PP/PE/PS mixed
plastics by 514–18, 556
dehalogenation of PVC/PP/PE/PS/HIPS-Br
mixed plastics by 518–21
effect of temperature 511–12, 512f
HCl reaction profile 510f
physical properties 496
preparation of 496
calcium carbonate/hydroxide/oxide,
dehalogenation by 29, 119, 123, 212, 390–1, 397, 467, 482, 540, 541t, 556, 673, 682, 741
calcium hydroxide, effect on pyrolysis of PET 390, 655, 656f, 693
calcium ion-exchanged X-type zeolite catalyst
see CaX catalyst
calorific (heating) value
coal 734
fuel oils 155t, 305–6, 305t, 533t
plastics 710
pyrolysis oils 155t, 304t, 429t, 674t
carbenium/carbonium ion formation, in
catalytic cracking 51–3, 76, 114, 132, 211, 228, 230, 735
carbon, as microwave absorbent 572
carbon black
as microwave absorbent 574, 584
recovery from tyres 466, 490
carbon–carbon bond energy 635
carbon–fluorine bond energy 635
carbon–hydrogen bond energy 635
carbon nanotubes 464, 465f
carbon number distribution
catalytically cracked plastics 384f, 505f, 507f
plastics-derived heavy oils 172f, 687f
pyrolysis products 384f, 504f, 505f, 507, 509f, 521f, 523f, 524f, 687f
after catalytic cracking 186f, 188
carbon residues, in fuels 155–6, 155t, 305t, 399
carbon-supported metal catalysts 84, 103, 149

carbonization 251
predictive model 271–2
process parameters 253t, 287t
product distribution and yield affected by
operating conditions 254t
slow process 251, 253t
time factors 252
see also gasification; pyrolysis; thermal
degradation
catalysts 79–85, 146–9, 239–44, 715–19, 746–7
acidity 173t, 183t, 239
factors affecting 196, 239
listed for various catalysts 240t
measurement of 173, 196
catalysts (continued)

activity 404–5, 716

loss in fluid catalytic cracking 228

bifunctional 132–3, 241–3

Brönsted acid sites 76, 81, 147, 196, 219

chemical properties 146–7, 173t, 183t, 716–17

alumina content 717

hydrogen factor 716–17

rare earth content 717

sodium content 717

deactivation by coke deposits 95, 123, 144, 174, 218t, 404, 746

disposable/throwaway 122

effect on product properties 116, 141–4, 241t

effect on pyrolysis temperature 231, 710, 716

effect on pyrolysis temperature 231, 116

external 406

heterogeneous 79–85

homogeneous 79

Lewis acid sites 76, 81, 147, 196, 219

micro activity test for 716

monofunctional 239–41

physicochemical properties 80t, 147, 173t, 183t, 240t, 717–19

apparent bulk density 717

attrition index 718–19

loss on ignition 718

particle size distribution 717–18

catalytic cracking 10, 43–247, 736–7

advantages 76–7, 194, 210, 226

compared with thermal cracking 74–5, 116, 118, 133, 194, 209–10, 383–6

direct process 97–9

effect of operational variables 92–6, 117, 118

catalyst concentration 94–5, 196–8, 199f, 233–4

plastics waste composition 95–6

temperature 93–4, 117

time 95

industrial processes 418–22, 438t, 440t, 441t, 741–4

laboratory experiments listed 730t

limitations 74, 77, 97, 129, 144, 226, 386

liquid-phase reactions 146

mass balance 731, 732t

multistage processes 97–9

PE 45–6, 46–54, 75–6, 79–85, 93, 94, 139–41, 140–9, 746t

PET 78, 233t, 416–17, 655–7

plastics derived heavy oil 172–88

plastics suitable for 77–8, 113, 416

PP 48–59, 78–9, 130, 139t, 143f, 148t, 212

PS 46, 54–9, 77, 116, 232t, 233t, 406–7, 746t

PVC 233t, 746t, 748

reaction mechanisms 51–3, 76, 114–15, 211, 228, 230–8, 422

solvents used 103

temperature effects 93–4, 139–41, 231, 404, 745, 746t

in Thermofuel process 408, 410f, 411

vapor-phase reactions 146

catalytic dehalogenation 96, 407, 420, 496, 505–8, 563

catalytic isomerization dewaxing 398, 417

catalytic pyrolysis

early research 194–5

in fluidized-bed reactors 445t

further research required 205

HDPE 140–53, 232t, 233t, 495

effect of catalysts 141–4

effect of PS addition 149–53

LDPE/EVA mixture 394–5

NanoFuel/Polymer-Engineering process 418–22

suitability of various reactor types 448t

various studies listed 232–3t

catalytic reforming 748–50

see also cracking–catalytic reforming

CaX catalyst, gasification using 182

centrifuges, in pyrolysis plant 397

ceramics industry, microwave heating 572

cetane number (for diesel)

calculation 317

catalytically cracked products 236t, 418, 750t

pyrolysis products 304t, 324, 326, 327, 429t, 674t, 685t, 698t, 750t

chain-end scission 114, 130, 131f, 132, 456, 457, 630, 714–15, 715f, 734

chain-stripping reactions 131, 132, 735

char

from hydropyrolysis of coal 609

from pyrolysis of various wastes 278t

energy contents 279t
INDEX

charcoal production 251, 287
chemical analysis methods 296, 316
chemical feedstock potential, oils/waxes for pyrolysis 306–9
chemical recycling 225, 367, 612–13
in Japan 669
see also feedstock recycling
chemical structure of plastics 294, 364–5
classification 364
China
Hunan University process 740, 742
Likun process 431, 740, 743–4
Royco process 422–3
survey article 729–55
Chiyoda process 429
chlorinated hydrocarbons
from pyrolysis of PVC mixed plastics 517, 522–3
GC-AED chromatograms 517
chlorine
fixation of 29, 96, 119, 123, 212, 349, 390–1, 397, 467, 482
problems caused by 15, 77, 217, 367, 390, 495, 747
chlorodifluoromethane, pyrolysis of 574
2-chloro-2-phenylpropane 517
circulating fluidized beds 436
advantages 436
comparison with other reactor types 446–9
disadvantages 437
gasification in 276, 438
pyrolysis in 394, 438, 443, 468–9
circulating-spheres reactor 168, 394, 552
see also stirred heat-medium-articles reactor
clay-based catalysts 81–2, 195, 405–6
liquid yields 202
Climax Plus method 586
cloud point 399, 401
diesel 401
effect of linear hydrocarbons 317, 387, 400
lubricating base oils 357
plastics-derived fuels 399, 400
Co-AC catalyst
hydrocracking by 218, 219, 220, 221
product distribution 218
coal
calorific/heat value 734
coprocessing with plastics 101–2, 216, 370, 723, 737–8
dehlorination of PVC using 721, 725
desulphurization of 609
flash pyrolysis of 606–8, 609
hydro-gasification of 34, 607, 609
microwave pyrolysis of 574, 582
coal-tar pitches, co-coking with plastics 120
coal-to-oil hydrogenation plant 30, 369
cobalt resinate catalysts 416
go-gasification, biomass with plastics 120
coke deposits
catalysts affected by 95, 123, 144, 174, 218, 404, 406, 746
characteristics 403
formation of 15, 54, 95, 123, 201
effect of catalyst types 148, 201, 202
from coprocessing of MWP/HVGO blend 218

test for coking tendency 156
leachability potential (in landfill) 403
prevention of build up during pyrolysis 392–3
uses 112
cold filter plugging point (CFPP), diesel 399–400, 401
collection systems (for waste) 24–5, 667
costs 26, 33, 703–4
combined power plant, pyrolysis fractions as feed 553
commingled plastic waste
catalytic liquefaction of 210–21, 234–7, 347–50
pyrolysis of 267–71
see also mixed plastics waste
Compact Power pyrolysis/gasification process 439
computer circuit boards
pyrolysis of 561
see also electrical/electronic equipment waste
condensation polymers, see also ABS; PC; PET; polyamide; polyester; polyurethane
conduction heating 570
Conrad process 430, 537–41, 550, 555
dehalogenation methods 540, 541
flow diagram 538
product analysis 540, 541
product yield at various temperatures 539
PVC mixed plastics 515, 522, 556
Conradson carbon test 156
Consortium for Fossil Fuel Science 346
consumption data (for plastics) 73, 205, 285, 286
Containers and Packaging Law (Japan) 37, 666–7
waste plastics specified 678
ConTherm process 553, 555

continuous pyrolysis plants 394
see also extruder reactors
continuous stirred tank reactors 395
agitators/impellers in 396
conventional pyrolysis see slow pyrolysis
conversion rates, comparison of pyrolysis reactor types 447t
coprocessing
coal with plastics 101–2, 216, 370, 723, 737–8
distillation residues with plastics 369–74
Fischer–Tropsch wax with LDPE 356, 357t, 358
HDPE with PET 356, 356t
limitations 217
naphtha with polyolefins 13–14
oil wastes with plastics 102–3, 119
petroleum fractions with plastics 102–3, 113, 119, 195, 205, 217, 369–74, 418, 422
solvents with plastics 103
corrosion problems 15, 77, 217, 367, 390, 393, 747
cost considerations
collection and recycling of waste plastics 26t, 33, 703–5, 706–7
landfill 206
various industrial plants 28, 30, 31, 350, 359, 376–8
various pyrolysis reactor types 449t
cracking–catalytic reforming 431, 730, 737
see also two-stage processes
cross-linked polymers 364–5
see also thermosets
cross-linking reactions 131, 735
crude oil
limited resources 531
prices 20t
as reference point for economic considerations 124, 273, 350, 359
Cycleplast project 12, 13
kinetic data 21t
cyclization reactions 238, 318, 319f
DAL rotary kiln process 555t
DBA process 439t
decalin, in catalytic cracking process 103
dehalogenation
by Ca-C sorbent 514–21, 556, 563
catalytic 96, 407, 420, 496, 505–8, 563, 720–1, 722
chemical methods 29, 119, 123, 212, 349, 390, 397, 467, 482, 556, 673, 682, 721, 741, 748
degradation of plastics
kinetics 226–38
types 225
dehalogenation
various approaches 24, 29, 39, 96, 99, 117, 563
see also chlorine fixation; dechlorination
dehydrocyclization 132
dehydrogenation, of naphthenes 132–3
Denmark, recycling of packaging waste
plastics 33
density
fuel oils 155t, 305t
plastics pyrolysis oils 155t, 304t
Department of Energy (DOE, USA) sponsored study 346
depolymerization 11, 74, 90
destructive distillation see pyrolysis
destructive hydrogenation see hydrocracking
desulphurization of coal/lignite 608, 609
DGEGA-type epoxy resin 339
DHC-8 catalyst
hydrocracking by 217, 218, 219, 220, 221
product distribution 218t
see also amorphous silica–alumina
DHC-32 catalyst 371t
dielectric loss tangent 571
diesel
additives 401
cold flow improvers 401
commercial
GC spectra 410f
prices 20t
properties 155t
nitrogen oxides emissions 413
plastics-derived 97–8, 99, 150, 151f, 155, 235, 236t, 384, 603–4
commercial processes 407–14
composition 236t
instability 400
low-temperature properties 399–400
properties 236t, 749t
stabilization of 400–1
storage stability 401–3
unsaturated hydrocarbons in 399, 402
sulfur content 155t, 413
Thermofuel process 411f, 413
diesel sludge 400
differential scanning calorimetry (DSC) 7
differential thermal analysis (DTA) 7, 201
microwave method 575
dimethyl terephthalate
recovery from waste PET 644–5
transesterification with ethylene glycol 643
2,4-dimethylhept-1-ene 387, 388f
diphenylmethane diisocyanate (MDI), from pyrolysis of polyurethanes 335, 336, 337
Dispons continuous pyrolysis process 598–604
continuous feeding of waste plastics 598–9
heating methods 599–603
schematic of plant 601–2f
disposable/throwaway catalysts 122
disproportionation, chain termination by 130, 131, 238
distillation, fractional 153–4
distillation columns, in pyrolysis plants 397, 429, 673, 682
distillation range
fuel oils 157–8, 157f, 305f
pyrolysis oils and distillates 157–8, 157f, 304f, 675f, 686f, 699f
distillation residues 365
upgrading of 366, 369
double rotary kiln pyrolysis 550
downdraft gasifiers 276, 277
drink carton material, microwave pyrolysis of 573, 580–1
DSD packaging waste collection system (Germany) 27, 346–7
mixed plastics waste 27, 214, 347
composition 210f, 485f
fluidized-bed pyrolysis of 459f, 482
pyrolysis products 347–50, 485f
dual-functional catalysts 214
see also bifunctional catalysts
dump fees 20
see also gate fees; tipping fees

Ebara Company (Japan)
fluidized-bed plants 8, 26, 34, 440f
see also Ube-Ebara
Ebara TwinRec process 440f, 469–71
commercial status 470–1
economic considerations 470
performance 470
economic considerations 22, 30, 36, 124, 205–6, 279–80, 350, 359, 376–8
monomer recovery 627
Eddith process 439f
electrical/electronic equipment waste collection and recycling of 25, 26, 34, 391
EU recycling quotas 558f
pyrolysis 35, 337–41

fluidized-bed 438f, 440f, 466, 469, 470
rotary kiln 552–3, 555f, 557–62
see also waste from electrical and electronic equipment (WEEE)
electrical pulse heating, coal pyrolysis using 606
electromagnetic spectrum 570f
elimination reactions 318
end-chain scission 114, 130, 131f, 132, 456, 457, 630, 714–15, 715f, 734
end-of-life-vehicles (ELV) waste 33
see also automobile shredder residue
end-use of plastics, analysis by sector 286f
energy balances
fluidized-bed pyrolysis of PMMA 634
Japanese liquefaction plants 675–6, 677f, 688–9, 691f, 700f
pyrolysis process 732–3
energy profit calculations 733–4
energy recovery 10, 252
industrial processes 439f, 440f, 441f, 469, 494, 553, 555f
see also waste-to-energy (WTO)
engine oils, viscosity index 351
entrained bed gasifier, in Texaco gasification process 277, 367
entrained-flow reactors 274–5, 278, 441f
environmental considerations 38, 376, 678, 692–3
Environmental Waste International 586
epoxy resin
chemical structure 294f
pyrolysis of, oil/wax products, FT-IR spectra 299f, 300
pyrolysis products 339–40
ethical considerations 37
ethylbenzene see alkyl aromatics
ethylene glycol
glycolysis of PET with 644
reaction with dimethyl terephthalate 643–4
reaction with terephthalic acid 643
recovery from PET 644–5
Europe
plastics consumption/waste data 73, 209, 285, 286f, 363, 612
recycling of PET bottles 642f
tyre waste 573
European Union
End of Life Vehicles Directive 33
Packaging and Packaging Waste Directive 24, 33, 73
recycling quotas/targets 558t
WEEE Directive 33, 558
EVA copolymer, thermal and catalytic cracking of 85
exchangeable/removable heating coil 121
extruder reactors 15–16, 16t, 91, 120–1, 440t
extrusion–rotary kiln reactors 531–67
industrial-scale processes 533–47
see also rotary kiln reactors
EZ-Oil Generator process 422
far-infrared heating system, in Royco process 423
fast pyrolysis see flash pyrolysis; ultra-fast pyrolysis
FAU type zeolites see zeolite Y
Faulkner rotary kiln system 550–1
FCC catalysts 147, 195, 196
coking tendency 202
coprocessing of distillation residues with waste plastics 370, 371t, 374t
in fluidized-bed pyrolysis 459t
liquid products produced over, boiling point distribution 204f
physicochemical properties 240t
pyrolysis of PS affected by 406–7, 459t
pyrolytic waxes cracked using 212–13
spent 81, 130
HDPE/PS mixtures cracked using 150–3f
polyolefin cracking by 81, 86, 87f, 90, 97, 116, 140–1f, 141–2, 142f, 144
feedstock recycling
advantages 286
halogen content limit 562–3
hetero-atom considerations 23–4, 562–3
industrial plants 27–32, 367–9
meaning of term 6, 367, 494
mixed plastics waste
gas composition 295
with low PVC content 367–9
product yield 291–2
reasoning behind 22–3
single plastics
gas composition 292–5
oil/wax composition 295–309
product yield 288–91
supply logistics 25–6
waste collection systems 24–5
fire/flame retardants 24, 391, 466, 558
see also polybrominated flame-retardant materials
first-order kinetics 226–7
Fischer–Tropsch waxes 351
copyrolysis with LDPE 356
lube oil produced 356, 357t, 359
pyrolysis products 357t, 358, 359f
hydroisomerization of 357t, 359
fixed-bed reactors
catalytic cracking in 86, 88, 95, 135, 165–6, 169, 173, 183
comparison with other reactor types 446–9t, 580t, 654t
gasification in 276, 277, 439t
hydrolysis of PET 659
pyrolysis in 16, 16t, 135, 375, 615
gas products 293t
PET pyrolysis 653–4
product distribution 289t, 290t
flame retardants see fire/flame retardants
flammability testing 7
flash point
liquid fuels 305, 305t, 317
pyrolysis oils and distillates 325, 429t, 674t, 685t, 698t
see also ignition point
flash pyrolysis
cracking 606–8, 609
compared with slow pyrolysis 253t, 287t, 617
of mixed plastics waste 268t, 271
PE 254t, 255, 258f, 613–17
product distribution 255t
temperature effects 255t, 258f, 745
of PET 266
of PP 258–9, 261f
process parameters 253t, 287t, 605, 606–9
of PS 262, 264f, 617–20
of PVC 264
pyrolysis technologies 273, 274–5
see also fluidized-bed pyrolysis; free-fall reactors
fluid catalytic cracking 120, 394
catalytic activity loss 228
effect of catalyst surface area 717
in Reentech process 425
see also FCC catalysts
fluid-bed coking 394
fluidized-bed pyrolysis 16t, 17, 18, 19, 89–90, 115, 116–17, 210, 274, 290–1, 394, 435–91
Blowdec process 429–30
BP process 28–30, 122, 438t, 467–8
carbon path within bed 450f
compared with microwave pyrolysis 576, 580t
defluidization times for various plastics 455f
degradation mechanisms 456–7
effect of process variables on products 456–66
first used for plastics 437, 475

Hamburg process 9, 27, 89–90, 123, 195, 437, 475–91
high-temperature 439t, 440t, 445t
industrial/demonstration plants listed 122–3, 438–43
key features 212
low-temperature 438t, 439t, 441t, 442t, 443t, 445t
operations 19, 450f, 453f
HPPE 90, 629–34

gas products 293

gas-phase operations 19, 450f, 453f
Hamburg process 9, 27, 89–90, 123, 195, 437, 475–91
HVPE 90, 629–34

hydrolysis of PET 659
hydrodynamic aspects 18, 435–7, 457
hydrolysis of PET 659

in catalytic hydrocracking 219
in thermal cracking 22, 114, 219, 318, 320–1, 331–2, 630–1, 713–14, 715, 720

Friedmann equation 227t

FSM-16 catalyst 81
fuel oils
additives 401, 402
ash content 155t, 156, 305t
calorific/heating values 155t, 305–6, 305t, 533t
carbon residues in 155–6, 155t, 305t, 399
cloud point 399, 401
density 155t, 305t

fluoropolymers 635
see also PTFE

Flynn–Wall equation 227t

FuelPlus (Belgium) packaging waste collection and recycling scheme 33, 34t
Foster Wheeler rubber pyrolysis process 16, 16t
Fourier transform infrared (FT-IR) spectrometry

PET pyrolysis products 164f, 297f, 298, 652, 653f
Pyrolytic oils/waxes 296–300

fractional distillation 153–4
gas products stream 154
heavy oil products stream 154
light oil products stream 154

Free-Fall reactors
advantages 615, 616, 617
Ateklab system

experimental procedure 611–12
LDPE pyrolysis results 613–17
PS pyrolysis results 617–20
set-up 610–11
coal pyrolysis using 606–8, 609
design aspects 609–10
earliest publication 606

Free-radical mechanisms in catalytic hydrocracking 219
in thermal cracking 22, 114, 219, 318, 320–1, 331–2, 630–1, 713–14, 715, 720

Friedmann equation 227t

FSM-16 catalyst 81
fuel oils
fuel oils (continued)
distillation range 155t, 157–8, 305t
flash point 305, 305t
ignition point 155t, 156
pour point 155t, 305, 401
properties 155t, 156, 305t
sulfur content 155t, 156, 305t
suspended sediments in 155t, 155t
viscosity 155t, 155t, 305t
water content 155t, 155t, 305t
fuel prices 20t
fuel properties 307–8, 317
pyrolysis oils/waxes 304–6
relation to chemical composition of pyrolysis liquids 317–18
standards covering 304–5
fuel quality, factors affecting 79, 399–403
fuel valorization 278–80
by gasification 279–80
by pyrolysis 278–9
fuels
boiling point distributions 203–4
catalytic cracking processes for production of 96, 97–8
economic considerations 205
petroleum-derived, properties 155t, 305t
plastics-derived 188–90, 346–50, 358–9
low-temperature properties 399–400
properties 304
see also diesel; gasoline; kerosene; syngas
Fuji process 123, 211, 431, 440t, 739t, 741, 748
melt circulation system 396, 741
product distribution 749t
FZ-W catalyst 745
gallosilicates, PE catalytic cracking by 84–5, 233t, 723
Garrett coal gasification process 607
gas chromatography
diesel, Thermofuel process 411f
HDPE pyrolytic waxes 306f, 307f
LDPE cracking products 75f, 76f
PS pyrolytic oil 308f
gas chromatography with atomic emission detector (GC-AED), halogen analysis 498, 517, 519
gas chromatography with mass selective detector (GC-MSD) 498
gas chromatography with mass spectrometry (GC/MS)
compared with 1H NMR 203
PE catalytic cracking 47–8, 48–50f, 52–3f, 61f, 63f, 65f
polyolefin catalytic cracking 203
PS catalytic cracking 54, 55f, 57f
pyrolysis products 316
of ABS 331f
of brominated epoxy resin 340f
of HDPE 323f
of LDPE 615f
microwave pyrolysis 580
of natural rubber 332f
of Nylons-6, 6334f
of PET 330f, 656f
of phenol–formaldehyde resin 341f
of polycarbonates 338f
of polyurethanes 336f, 337f
of PP 325f
of PVC 328f, 500
repetitive injection studies 47
see also repetitive injection GC/MS
gas oil
calorific/heating value 305t, 533t
commercial prices 20t
optimum temperature in catalytic cracking 177
properties 305t
as pyrolysis product 17
see also vacuum gas oil (VGO)
gas phase pyrolysis 19, 146
gas products
characterization of 203
as distillation fraction 154
economic value 194
from catalytic cracking
of MWP 235
of plastics-derived heavy oil 174t, 174f, 176t, 177f
of polyolefins 50f, 52f, 53f, 78, 139t, 143f, 144, 145f, 201, 203
from coprocessing of MWP/HVGO blend 218t
from coprocessing of petroleum residues with waste plastics 375
from pyrolysis
of HDPE 293t
of LDPE 293t
of LLDPE 293t
of mixed plastics 293t, 295, 403
of PE 139t, 255t, 257t, 293t
of PET 266t, 267t, 293t
of polyesters 293t
of polyurethanes 293t
of PP 259t, 260t, 293t
of PS 293t
of PVC 293t
heating value 235, 276, 279
gas residence time
in fluidized-bed reactors 457
in free-fall reactors 609
gas–solid fluidization 435
see also fluidized-bed reactors
gas–solid reactors, comparison between main types 446–9

gas turbine generators 604
gasification 10, 23, 251, 737
activation energy for 182, 183t
compared with pyrolysis 251, 275–6, 287
fluidized-bed gasifiers 438t
fuel valorization by 279–80
industrial plants 23, 32, 277–8, 367, 368f
of PE 258, 258f
of PP 261, 262f
of PS 263
reactor types 276–7
technologies 275–8
see also co-gasification
gasoline
as catalytic cracking product
from plastics-derived heavy oil 174f, 175–88, 213, 214f
from waste plastics 97–8, 99, 150, 151f, 154, 235, 349f, 748–9
RON values 184, 185f, 213, 749t
commercial prices 20t
properties 155t, 204f
RON values 179t, 185f
composition 179t, 184, 185f, 213t
quality index (RON) 175
gate fees, for various industrial plants 28, 30, 31

glycolysis, of PET 644

H-gallosilicates, PE catalytic cracking by
84–5, 233t, 723

1H NMR
compared with GC/MS 203
olefinic/paraffinic hydrogen ratios 203
Haloclean rotary kiln process 552–3, 555t, 559–62
condition of kiln after continuous operation
562, 563f
pyrolysis residues 561f, 562f
halogenated plastics
problems encountered during pyrolysis
15, 23–4, 77, 217, 391
see also dehalogenation
Hamburg fluidized-bed pyrolysis process 9, 27, 89–90, 123, 195, 437, 440t, 475–91, 628–9, 740t, 741–2
catalytic cracking modification 90, 195
description 89–90, 476–80, 628–9
fire tubes for heating 478f, 479f
flow scheme 89f, 477f, 628f

industrial pilot plants
Ebenhausen 27, 123, 440t, 476, 488–9, 742
Grimma 476, 489–90
PMMA pyrolysis 90, 629–34
polyolefin pyrolysis 27, 90, 123, 482–3, 484t, 486–7
process parameters variation 476t
PS pyrolysis 90, 123, 635
PTFE pyrolysis 635–8
pyrolysis of tires 480–2, 488, 489–90

HDPE
catalytic cracking of 93, 94, 140–9, 404
effect of polymer-to-catalyst ratio 197
effect of PS 149–53
initial degradation mechanism 199–201
product distribution 137f, 148t, 495, 732t
various studies listed 232t, 233t
coprocessing with petroleum distillation residues 370, 371t, 373t
fluidized-bed pyrolysis of 458t, 459t, 460t, 461t, 487t
microwave pyrolysis of 578f, 579f
pyrolysis of
gas products 257t, 292, 293t, 294
kinetic data 21t
oil/wax products
chemical feedstock potential 307
FT-IR spectra 296–7, 296f
molecular weight range 301f, 302t
products 148t, 256t, 257t, 289t, 323f, 352f, 356f, 731t
various studies listed 231t
uses 345

HDPE/PET mixture, pyrolysis of 356
heat balances
pyrolysis reactors 20–1
see also energy balances
heat exchange characteristics, comparison of pyrolysis reactor types 446t
heat transfer limitations, pyrolysis of plastics 577–8

heating methods 570
heating value see calorific (heating) value
heavy fuel oil
commercial prices 20t
properties 305t
heavy metals, problems encountered 118
heavy oil
calorific/heating value 155t, 305t, 533t
coprocessing with plastics 217
as distillation fraction 154
heavy oil, plastics-derived
 carbon number distribution 172f, 687f
 cracking over acidic catalysts 172–5
 cracking over Ni-REY catalyst 183–8, 233t
 cracking over REY catalysts
 kinetics 180–3
 product distribution and yield 175–9, 213
 reaction pathway 181, 182f
 hydrocracking over acidic catalysts 172–5
 hydrocracking over Ni-REY catalyst 183–8, 233t
 hydrocracking over REY catalysts
 kinetics 180–3
 product distribution and yield 175–9, 213
 hydrocracking of 214, 347, 349
 production of 137, 162–72, 673, 682, 696
 properties 155
 t, 674
 t, 685
 t, 698
 heavy oil, see also diesel; kerosene
 helical impellor 188, 189f
 heteroatomic polymers
 pyrolysis of 720–1
 see also ABS; PET; PVC
 hetero-atoms
 catalysts affected by 77, 211, 217, 219
 fuel quality affected by 10, 390
 process difficulties due to 4, 7, 14, 23–4, 77, 367, 393
 removal by hydrotreating 398
 heterogeneous catalysts 79–85
 high-density polyethylene see HDPE
 HIPS-Br with PVC mixed plastics, pyrolysis of 518–21
 Hitachi Zosen pyrolysis process 427–9
 features 427
 fuel properties 429t
 mass balance 428f
 pyrolysis vessel 428f
 HMCM-41 catalyst
 polyolefin cracking by 82, 83f, 84f, 93f, 118
 PS cracking by 406
 HNZ zeolite catalyst, physicochemical properties 240t
 Hokkaido University (Japan)
 stirred heat-medium-particles reactor
 bench-scale reactor 168–72
 pilot plant 188–90
 homogeneous catalysts 79
 see also Lewis acid catalysts
 Horowitz–Metger equation 227t
 household waste, costs of
 collection/sorting/recycling 26t, 704t
 household waste plastics see municipal waste plastics
 HSD Stabilizer (for diesel) 402–3
 Hunan University process 740t, 742
 HY zeolite catalysts
 deactivation by coke deposits 174, 404, 746
 gasoline fraction reformed by 749
 physicochemical properties 173t, 183t, 240t
 plastics-derived heavy oil cracked by
 174f, 174t, 184, 185f
 polyolefins cracked by 45, 46, 48, 49, 51, 52, 53–4, 404
 see also Pt-HY
 hydrochloric acid
 analytical results 688t
 recovery from dechlorination processes 30, 39, 210, 278, 674, 682, 685–6, 720, 747–8
 hydrocracking 60–7, 113, 214, 722, 737
 catalysts used 60, 214, 217, 218, 219, 220, 221
 co-processing of distillation residues with
 waste plastics 113, 370, 371t, 374t
 distillation residues upgraded by 366
 gasoline from 214, 722
 of PE 60–7
 pyrolysis-derived heavy oils 214
 reaction mechanisms 215f
 hydrodesulphurization catalysts 216, 221
 hydrogen adsorption properties, PET pyrolytic carbon 657
 hydrogen chloride, removal see dechlorination hydrogen sulfide, free-radical mechanisms affected by 219–20
 hydrogen transfer index 722
 hydrogen-transfer reactions
 in catalytic cracking 238
 in thermal cracking 22, 75, 130, 131f, 320, 388f, 650f
 hydrogenation 737
 economic considerations 30
 end-product affected by 10
 industrial plants 23, 30–2, 369
 reaction mechanisms 215f
 see also hydrocracking
 hydroisomerization 351
 of Fischer–Tropsch wax pyrolysed products 357t, 358
 of LDPE + FT wax pyrolysed products 356, 357t, 358
 hydrolysis, of polyesters 164, 166, 329, 647–9, 658–9
 hydropyrolysis 374
 hydrotreating, pyrolysis-derived fuels 397–8
 HZSM-5 zeolite catalysts
 deactivation by coke deposits 95, 174, 404, 746
 hydrocracking by 214, 217, 218, 219, 220, 221, 347, 349, 494–5
 product distribution 218t
 physicochemical properties 82, 173t, 175, 240t
INDEX

769

plastics-derived heavy oil cracked using
174t, 174t, 213
polyolefin cracking by 46, 48, 49–51, 53–4, 76f, 82, 83f, 93, 94, 95, 116, 140, 226, 394, 404, 723
PS cracking by 406
see also Pt-HZSM-5; ZSM-5

ignition point
fuel oils 155t, 156
pyrolysis oils 325
see also flash point

incineration 10, 252, 494
air pollution due to 193, 532
costs compared with recycling 704

disadvantages 494, 532
incoming feedstock specification 391–2
indanes, from PS catalytic cracking 55f, 56, 57f
India, pyrolysis plants 724–7
induction heating 570
inert purge gas, in pyrolysis plant 396
infrared heating system
in Dispons process 599
in Royco process 423
internally circulating fluidized beds, pyrolysis
in 440t, 469, 613, 614
investment costs, relative, plant capacity
affecting 14, 14t, 378
iron oxide, hydrated form [FeOOH]
catalytic hydrolysis by 166–7, 171, 188–9, 747
dechlorination of PVC-containing mixture
by 505, 506t
structure and morphology 168, 507
iron oxide carbon composite (Fe-C) sorbent
HCl reaction profile 510f
laboratory evaluation of 509–11
physical properties 496
preparation of 496
iron oxide catalysts
dechlorination using 407, 496, 505–8
pyrolysis products from PVC/VGO mixture
374t
isomerization dewaxing 398, 417
isomerization reactions 132, 237–8, 242, 388f, 735
isoparaffins
in commercial gasoline 179t, 185f
from heavy-oil conversion 178f, 179f, 184, 185f
from PE catalytic cracking 148t
from pyrolytic wax catalytic cracking 213t
Japan
factory waste 161, 668t
history of plastics liquefaction 665–6
household waste 161, 209, 668t
legislation on recycling 37, 666
liquefaction plants 8, 26, 34, 37, 670–702
cost comparison with other techniques 705t
Mikasa plant 695–702
Niigata plant 670–8
Sapporo plant 678–95
PET bottle recycling 642t, 667
plastics recycling/recovery initiatives
36–7, 666t
plastics waste data 209, 667, 668t
scope for liquefaction 706–8
cost-reduction considerations 706–7
local recycling systems 707–8
new outlets for pyrolysis oils 707
Thermofuel process plants 411–12
tyre waste 573
Japan Container and Package Recycling Association (JCPRA) 667
waste plastics bid system 705
baling system requirements 667, 705
Japan Energy Co, Ltd, pyrolytic light oil used in refinery 691, 694, 707
Japan Fluid Cracking process 475
Japan Physics and Chemistry Research Institution, pyrolysis process 739t
Japanese Carbon Company plant 739t
JFE Steel (Japan)
blast furnaces, plastics waste used in 37, 669t, 704
gasification plants 669t
kerosene
addition to diesel 401
calorific/heating value 155t, 305t, 533t
as catalytic cracking product 99, 150, 151f, 155, 349f
commercial, properties 155t, 305t
as pyrolysis product 17
kettle reactors 393
KIER process 137, 138f
gas product 137, 139t
heavy oil, properties 155t, 157, 158
light oil, properties 155t, 157–8
liquid product 137, 155–8
kinetics
catalytic cracking 180–3
degradation of plastics 226–38
pyrolysis of plastics 12–13, 21, 719
Kissinger equation 227t
KOB-627 catalyst 213, 217
Kobe rotary (pyrolytic) kilns 554t
Kobe Steel (Japan), blast furnaces, plastics waste used in 669t
Kohe¨ol-Anlage Bottom (KAB) liquefaction plant 30, 346
Korea
mixed plastics waste 153
Reentech process 423–7
see also KIER process
Kubota Co., Ltd, thermal cracking process 669t, 695
Kurata process 744
KWU process 554t
laboratory-scale pyrolysers 316
batch reactor 348f
continuous reactor 353f
landfill
cost considerations 206
disposal of plastics in 26, 73, 193, 252
Japan 668t
layered clay catalysts 405–6
LDPE
catalytic cracking of 76f, 91, 95, 149, 232t, 233t, 405, 722–3
product distributions 137f, 406, 495, 545t, 732t
coprocessing with petroleum distillation residues 370, 371–3t
copyrolysis with Fischer–Tropsch waxes, products 356, 357t, 359
pyrolysis of
in fluidized bed 613
in free-fall reactors 613–17
gas products 257t, 292, 293t, 294, 614
liquid products 615–16, 617f
oil/wax products
chemical feedstock potential 307
FT-IR spectra 296–7, 296f
molecular weight range 301f, 302t
product distribution 75f, 256t, 257t, 289t, 617, 731t
in screw kiln reactor 542, 543t
uses 345
LDPE/EVA mixture, catalytic pyrolysis of 394–5
lead bath reactor 16t, 17
legislation, effect on recycling rates 33, 37
Lewis acid catalysts, polyolefin cracking by 46, 79
Lewis acid sites on catalysts 76, 81, 147, 196, 219
Libond Industry/Macromolecule Cracking Research Institution process 744
lifetimes of plastics 6
light cycle oil (LCO), coprocessed with plastics 90–1, 102, 119, 217, 422
light fuel oil (LFO), properties 305t
light oil
components 376
as distillation fraction 154
pyrolytic, properties 155t, 673, 674t, 685t, 698t
taxation in Japan 706, 707
see also gasoline
light paraffin oil fraction, as catalytic cracking product 235, 236t
lignite
as catalyst in Veba process 739t, 748
desulphurization of 608
devolatilization of 606, 607
Likun process 431, 740t, 743–4
linear low-density polyethylene see LLDPE liquefaction
catalytic, mixed plastics waste 210–21, 234–7, 347–50
plastics waste 346–7
cost comparison with other techniques 705t, 706–7
in Japan 20, 665–708
liquid products
boiling point distributions 203–4, 352f, 376
characterization of 203
from catalytic cracking of LLDPE 199f
of various plastics 137f, 201, 203–4
from coprocessing of MWP/HVGO blend 218t
from coprocessing of petroleum residues with waste plastics 375–6
from KIER process
PONA distributions 145f
properties 155–8
yields with various catalysts 148t
from pyrolysis
chemical composition 317–21
of polyolefins 603–4
of PS 263t
of PVC mixed plastics 504f, 505f, 506f, 507f
see also gasoline; heavy oil; light oil; oils
liquid selectivity 202
liquid yield, effect of various catalysts 148t, 202, 218t
liquid-phase pyrolysis 19
LLDPE
catalytic cracking of 198, 199f, 232t
pyrolysis of 289t, 292, 293t, 294, 487t
local processing plants, economic aspects
124, 707–8

logistics problems, in waste collection
25–6, 32, 704–5

low-density polyethylene see LDPE

low-temperature carburization 551

LPG-type gases 604

lubricating oils
base oils 351

production of
from Fischer–Tropsch wax and waste plastics 351, 356, 357f, 358

from mixed waste plastics 351, 356, 356f, 359–60

from polyolefins 100, 120, 353, 360

pyrolysis pilot plant 354–8

waste
amount dumped in USA 351

coprocessed with plastics 102–3, 119, 123

Lurgi fixed-bed grate gasifiers 277

Lurgi multi-purpose gasifier 277

mass balance
catalytic cracking of plastics 731, 732t

catalytic cracking of plastics-derived heavy oil 181

Japanese liquefaction plants 675, 677f, 687–8, 690f, 690t, 698, 699f

pyrolysis of plastics 19–20, 136–7, 730–1, 731t, 732f

in Hitachi Zosen process 428f

PE 255t, 256t

PET 266t

PP 259t

PS 262t, 263t

PVC 264t, 265t

mass spectrometry
analysis of PET pyrolysis products 650–2

collision-induced dissociation tandem mass spectrometry (CID-MS/MS) 651–2

negative chemical ionization mass spectrometry (NCI-MS) 650–1

see also gas chromatography with mass spectrometry (GC/MS)

Maxwell–Wagner polarization 571

Mazda process 441t, 740t

MCM-41 catalyst 81, 82f, 147, 195

physicochemical properties 240t

polyolefin cracking by 46, 48, 49, 51, 53–4, 53f, 91, 116, 144, 149

PS cracking by 46

see also Al-MCM-41; HMCM-41; Pt-HMCM-41

mechanical recycling 6, 193, 209, 493–4, 667

cost comparison with other techniques 705t

and feedstock recycling 39–40, 667, 705

PET bottles 641, 642t, 643, 667, 682

problems encountered 595

mechanisms see reaction mechanisms

melting vessel

comparison with other reactor types 446–9t

in industrial plants 408f, 409f

mesoporous catalysts 81

see also amorphous silica–alumina;

FSM-16; MCM-41; SBA-15

metal oxide catalysts 166–8, 747

metal-supported activated carbon (M-AC) catalysts 46, 211

methanolysis, of PET 644–7

methyl methacrylate, recovery from PMMA 11, 12t, 74, 90, 627, 629, 631t, 633t

MFI type zeolite catalyst

HDPE cracked using 149

plastics-derived heavy oil cracked using 184, 185f, 186f

properties 183t

see also ZSM-5

micro activity test (for catalysts) 716

microporous catalysts see zeolite catalysts

microwave absorbents 572, 574

patents 584, 585

microwave differential thermal analysis 575

microwave effect 581–2

microwave heating
advantages 571, 582, 586

ceramics industry 572

industrial applications 572

mechanisms 571

plastics 572

principles 570–2

microwave pyrolysis

advantages 573

bench-scale semi-batch experiments

equipment 576–7

results 578–81

commercial processes 587–8

compared with fluidized-bed pyrolysis 576

meaning of term 572, 584

patents covering 582–5

plastic wastes 573, 580–1, 584–6

rubber waste 35

scientific studies 575–82

thermogravimetric experiments

equipment 575–6

results 577–8
Mikasa waste plastics liquefaction plant (Japan) 695–702
carbon residues 700, 701t
dehydrochlorination treatment 696, 701–2
environmental considerations 702
flow diagram 697f
liquefaction/pyrolysis stage 696, 697f
oils as products 696, 698
properties 698t, 699f
pretreatment stage 695–6, 697f
Mitsubishi thermal cracking process 17, 739t
Mitsui process 17, 441t, 739t
mixed plastics waste
catalytic liquefaction of 210–21, 234–7, 347–50
composition 210t, 485t, 537t, 673t
flash pyrolysis of 268t, 271
fluidized-bed pyrolysis of 458t, 459t, 464–6
by Hamburg Process 440t, 485t, 487t, 489t, 490t
liquefaction of 346–7
pyrolysis of 267–71, 385
fuels produced 278t, 279t
gas products 293t, 295
oil/wax products
FT-IR spectra 298, 299f
molecular weight range 301–2
slow pyrolysis of 268–70
tertiary recycling of 366–9
economic evaluation 376–8
molecular sieve catalysts 80, 746–7
see also zeolite catalysts
Molecular Waste Technologies Inc. 586
molecular weight range
effect of catalysts 393
polydispersity 300
for various pyrolytic oils and waxes 302t
for various pyrolytic oils and waxes 300–4
molten-metal bath reactors 16t, 17, 627
monofunctional catalysts 239–41
see also amorphous silica–alumina; HY; HZSM-5; MCM-41; mordenite; zeolites
monomers 4
recovery
from PET 12t, 164, 389, 644–9, 655, 658
from PMMA 11, 12t, 74, 90, 627, 629, 631t, 633t
from PS 90, 123, 262, 301, 302, 389, 464, 618, 619f, 635, 636t
from PTFE 636, 637, 638t
see also ethylene glycol; methyl methacrylate; styrene; terephthalic acid; tetrafluoroethylene
mordenite catalyst
HDPE cracked using 148, 149, 404
physicochemical properties 80t, 240t
pore size 80t, 239
moving-bed catalytic cracking process 423
moving-bed furnaces 273–4
multiple hearth furnaces, gasification in 276
municipal solid waste (MSW)
amount of plastics in 209, 288, 668t
incineration of 10, 668t
polymer types in 113, 129, 210t, 218t, 235, 287, 288f, 345, 346f, 524, 673t, 682, 684f
pyrolysis of
in fluidized-bed reactors 440t, 471
fuels produced 278t, 279t
microwave pyrolysis 585, 586
in rotary kilns 439t, 441t, 442t, 443t, 554t, 555t
in tubular reactors 439t
see also household waste
municipal waste plastics (MWP)
baling costs 704t, 705
catalytic liquefaction of 210–21, 234–7
liquid-phase contact 210–11
co-processing with other materials 216–21
collection costs 26t, 33, 703–5
composition, Japanese data 523, 524, 673t, 682, 684f
European data 73, 209, 363
Japanese data 209, 668t
PVC in 210t, 218t, 288f, 346f, 524, 673t, 682, 684f
pyrolysis of 13, 442t, 521–3
catalytic upgrading of product 211–16
Japanese plants 670–702
pilot plant studies 523–5
US data 345, 363
see also mixed plastics waste
MVU Rotopyr rotary kiln process 555t
MWW type zeolite catalyst, HDPE cracked using 149
nanocrystalline zeolites 82
see also HZSM-5
NanoFuel Diesel process 418–22
see also Polymer Engineering process
naphtha
as catalytic cracking product 235, 236t
commercial prices 20t
copyrolysis
 kinetics and mechanism studied 21–2
 with polyolefins 13–14
 from hydrocracking of MWP/HVGO blend 220–1
 as pyrolysis product 17
 size of typical cracking plant 25
 specifications and test methods 18

naphthenes 399
 from PE catalytic cracking 143f, 145f, 148t, 151f
 from PS catalytic cracking 56, 57f, 151f
 from pyrolytic wax catalytic cracking 213t

see also PONA distributions
natural rubber, pyrolysis products 332
needle coke, production of 724
negative chemical ionization mass spectrometry (NCI-MS), pyrolysis products of PET 650–1
Ni-REY catalyst
 nickel content 184, 185f
 plastics-derived heavy oil upgraded over 88, 183–8, 189, 214
 properties 183t
 nickel catalysts 408, 424, 717
nickel hydroxide, catalytic cracking of PET by 166
nickel oxide, catalytic cracking of PET by 166
nickel-based zeolite catalysts 86, 88, 118, 183
Niigata (Japan), municipal waste plastics, composition 210t, 673t
Niigata waste plastics liquefaction plant 20, 666t, 670–8
 composition of waste plastics 673
 dechlorination stage 671–2
 energy balance 675–6, 677f
 environmental considerations 678
 flow diagram 672f
 mass balance 675, 677f
 oils as products 673–4
 properties 674t, 675f
 pretreatment of waste 670, 671
 pyrolysis residue 675, 676
 analytical composition 676t, 678
 applications 678
 pyrolysis stage 672–3
 view of plant 671f
Nikon process 441t
NiMo catalysts, coprocessing of distillation residues with waste plastics 370, 371–4t
Nippon Steel Corp. (Japan)
 coke ovens, plastics waste used in 36, 37, 669t
 two-stage thermal cracking/catalytic cracking plant 99, 100f
 nitrogen oxides emissions, Thermofuel diesel 413
NKT process 442t
Noell rotary (pyrolytic) kilns 274t, 441t, 554t
Noell-KRC gasification process 278, 441t
nomenclature 4–6
North America
 recycling of PET bottles 642t
 tyre waste 573
see also Canada; USA
 number average molecular weight
 meaning of term 300
 for various pyrolytic oils and waxes 302t
nylons
 pyrolysis of
 effect of steam 165
 fuel properties of oils produced 304t, 391t
 pyrolysis products
 of nylon-6 333–4
 of nylon-6, 6 334–5
octane number
 factors affecting 241
see also research octane number (RON)
Octel FOA-6 (fuel additive) 400
ohmic heating 570
oil wastes, coprocessing with plastics 102–3, 119, 123
oils
 chemical analysis of 296–300, 316
 coprocessed with plastics 102–3, 119
 pyrolysis-derived, properties 155t, 157–8, 304t
oils/waxes
 pyrolytic
 chemical feedstock potential 306–9
 FT-IR spectrometry 296–300
 fuel properties 304–6
 molecular weight range 300–4
olefins 399
 from polyolefin catalytic cracking 50f, 52f, 53f, 78, 143f, 144, 145f, 236t
 from pyrolytic wax catalytic cracking 213t
see also PONA distributions
operability maps, fluidized-bed pyrolysis 455–6
oxidation 10
oxidation stability test, diesel fuels 402
oxidative pyrolysis, of PET 657–8
INDEX

oxygen-containing plastics see nylons; PBT; PC; PET; polyamides; polyesters
Ozarawa equation 227t
Ozmotech Thermofuel process 407–14, 724

Packaging and Packaging Waste (EU)
Directive 24, 33, 73
packaging waste
collection systems for 24, 25t, 33, 33t
logistics of recycling 25–6
packaging waste plastics
composition 617
pyrolysis of 267–71, 321–9
paper recycling refuse, fuels produced by pyrolysis 278t, 279t
paraffins 399
n-paraffins
in commercial gasoline 179t, 185f
in diesel 387
from heavy-oil conversion 178f, 179f, 184, 185f
from PE catalytic cracking 46–7, 50–1, 50f, 52f, 53f, 148t, 150–1, 151f
from pyrolytic wax catalytic cracking 213t
particle size
catalysts 717–18
comparison of pyrolysis reactor types 446t
particulate (smoke) emissions, diesel 413
PBT, thermal degradation of, effect of steam 164, 165
PC
pyrolysis of
effect of steam 164, 165
product distribution 290t
PE
calorific value 533t
 catalytic cracking of 45–6, 46–54, 75–6, 79–85, 93, 94, 139–41, 140–9
 chain reactions 51–2
 in fluidized-bed reactor 90
 product distribution 148t, 732t
 in screw kiln reactor 91, 116
 in stirred semi-batch reactor 86, 87f
 temperature effects 139–41, 746t
 chemical structure 294f
 flash pyrolysis of 255, 255t, 258f, 613
 in free-fall reactor 613–17
 product distribution 255t
 temperature effects 255t, 258f, 745
 fluidized-bed pyrolysis of defluidization times 455f
 effect of process variables on products 458t, 459t, 460t, 461t, 462, 556, 580t
 by Hamburg Process 123, 483t, 487t, 489t, 490t
 mass balance 255t, 483t, 487t, 613
 gasification of 258, 258f
 hydrocracking of 60–7, 139t, 494–5, 556
 by PtHMCM-41 catalyst 63–6
 by PtHY catalyst 63, 63f, 64f
 by PtHZSM-5 catalyst 60–3
 pyrolysis of 255–8, 322–4, 387
 compared with PP pyrolysis 724
 effect of PVC 501
 effect of steam 165f, 258f
 energy balance calculations 732–3
 energy profit calculation 733–4
 fuel properties 304t, 387, 391t
 gas products 292, 293t, 294
 kinetic data 21t
 oil/wax products
 FT-IR spectra 296–7, 296f
 molecular weight range 301f, 302t, 613
 products 11, 12, 12t, 115, 139t, 148t, 255t, 257t, 289t, 322–4, 462, 463f, 731t, 732f
 effect of operating conditions 254t, 580t
 reaction mechanism 713–14, 714f
 temperature effects 137, 255, 255t, 256f, 257t, 258, 258f
 slow pyrolysis of 254t, 256–8
 see also HDPE; LDPE; LLDPE
 PE/PET mixtures, pyrolysis of 508–9
 PE/PET/PP mixtures, fluidized-bed pyrolysis of 455f
 PE/PP mixtures, fluidized-bed pyrolysis of 484t
 PE/PS mixtures, pyrolysis of 268–9f
 PE/PVC mixtures
 pyrolysis of 502–4
 liquid products 504f
 product distribution 503t
 PET
 bottles 641
 recycling of 641, 642t, 643, 667, 682
 world demand data 642t, 643t
 catalytic cracking of 78, 233t, 655–7, 747
 in Smuda process 416–17
 in steam atmosphere 165–8, 655
 chemical structure 294f
 effect on pyrolysis of PVC mixed plastics 521, 522t, 523, 523f, 524f
 flash pyrolysis of 266
 fluidized-bed pyrolysis of 455f, 464, 654–5
 glycolysis of 644
hydrolysis of 166, 647–9, 658–9
acid-catalyzed hydrolysis 647–8
base-catalyzed hydrolysis 648–9
manufacture of 162, 164, 643–4
methanolysis of 644–7
batch process 646f
continuous process 646f
in municipal waste plastics 210t, 218t, 288f, 346f, 524, 673t, 682, 684f
oxidative pyrolysis of 657–8
pyrolysis of 162–4, 266–7, 329, 389–90, 653–5
activated carbon produced 657
effect of calcium hydroxide 390, 655, 656f, 693
effect of steam 163, 164, 165f, 658–9
in fixed-bed reactor 653–4
in fluidized-bed reactor 455f, 464, 654–5
gas products 293t, 294–5
kinetic data 21t
molecular weight range of products 301f, 302t
oil/wax products 297f, 298, 301f, 302t
products 12, 12t, 164, 266, 266t, 267t, 290t, 291, 329, 389–90
reaction mechanisms 389f, 650, 650f, 651, 653f
recovery of monomers from 12t, 164, 389, 644–9, 655, 658–9
slow pyrolysis of 266–7
solvolyis of 643–9
thermal degradation of
FT-IR spectra 164f, 297f, 298, 652, 653f
mass spectrometry analysis 650–2
thermogravimetry curves 163f, 165f
uses 641, 642t
world consumption data 641, 642t
PET/HDPE mixtures, pyrolysis of 356
PET/PP mixtures, pyrolysis of 655, 657f
PET/PS mixtures, pyrolysis of 270f
PET/PVC mixtures, pyrolysis of 502
petroleum fractions, coprocessing with waste plastics 102–3, 217, 372–3, 374t
petroleum residues 365
coprocessing with waste plastics 369–74
upgrading of 365–6, 369
petroleum-derived fuels
molecular weight distribution 303f
see also diesel; gasoline; kerosene
phenol–formaldehyde resin, pyrolysis products 340–1
phenolic resin
chemical structure 294f
pyrolysis of, oil/wax products, FT-IR spectra 299f, 300
phthalates (in PVC) 329, 376
phthalic anhydride, recovery of 97, 309
physical recycling see mechanical recycling
pillared clay catalysts 81–2, 195, 404
liquid products produced over
boiling point distribution 204f
olefinic/paraffinic hydrogen ratio 203
yields 202
PKA process/rotary kilns 273, 274t, 442t
PKA-Keiner process 554t
plasma reactor, gasification in 121
Plastic Containers and Packaging Recycling Law (Japan, 2000) 37, 666
effect on recycling activities 703f
plastic film, in municipal solid waste 288
Plastic Waste Management Institute (PWMI, Japan), support by 36, 666t, 669t, 670
plasticizers, PVC 329
plastics
classification criteria 5
consumption data 73, 205, 285, 286t
meaning of term 4
Plastics Europe see Association of Plastics Manufacturers in Europe
plastics waste
European data 73, 209, 363, 612
household data 33, 209
incoming feedstock specification 391–2
increase in amount 193
Japanese data 209, 667, 668t
US data 345, 363, 532
platinum-catalyzed hydrogenation 66–7
see also hydrocracking; PtHCMC-41; PtHY; PtHZSM-5 catalyst
platinum-impregnated catalysts 242
Pleq rotary kiln process 554t
PMMA
cross-linked 634
filled, pyrolysis of 631–4
fillers 628
pyrolysis of 460t, 556–7, 629–34
energy balance 634
monomer recovered 11, 12t, 74, 90, 627, 629, 631t, 633t
products 11, 12t, 74, 90, 630t, 631t, 633t
reaction mechanism 630–1, 714–15, 715f
Poland, thermal cracking plant 123
political considerations 11, 37, 39
poly(acrylonitrile-co-styrene-co-butadiene) see ABS
polyalkene plastics see polyolefins
polyamides
 hydrolytic decomposition of, effect of PVC 502
 pyrolysis of 333–5
 kinetic data 21t
 products 11, 12, 12t, 290t, 333–5
 reaction mechanisms 319f
see also nylons
polybrominated flame-retardant materials, thermal degradation of 520
polybutadiene
 thermal stability 333
see also butadiene rubber
polycarbonate see PC
polycyclic aromatic hydrocarbons (PAHs) 413, 495
polyester resin, pyrolysis of, oil/wax products, FT-IR spectra 298, 299f
polyester/styrene copolymer
 pyrolysis of
 fuel properties of oils produced 304t
 oil/wax products, chemical feedstock potential 307
polymesters
 chemical structure 294f
 hydrolysis of 164, 165
 pyrolysis of 164, 165
 gas products 293t, 295
 products 290t, 329
 reaction mechanisms 319f
see also PBT; PC; PET
polyethylene see HDPE; LDPE; PE
poly(ethylene terephthalate) see PET
polyisoprene
 pyrolysis of 332
see also natural rubber
Polymer Cracking Process pilot plant 367–8, 467–8
see also BP fluidized-bed pyrolysis process
Polymer Engineering process 418–22
 advantages 422
 catalyst 418, 420–1
 compared with Thermofuel process 422
 flow diagram 421f
 output rate 421, 422
polymer-to-catalyst ratio 94–5, 196–8, 199f
polyolefins
 acid-catalyzed cracking of 45–72, 77, 78f, 83–4f, 93–6
 reaction mechanisms 76, 114–15, 199–201
 composition 7, 113, 596
 copyrolysis with naphtha 13–14
fluidized-bed pyrolysis of 458t
 effect of steam as fluidizing gas 90, 486t
general scheme for processing 112–13
pyrolysis of 255–61, 322–6, 595–604
 Dispos continuous process 598–604
 heating by gas products 596
 mechanism(s) 22, 75, 113–14
oil/wax products
 chemical feedstock potential 307
 FT-IR spectra 296–7, 296f
 molecular weight range 301, 301f, 302t
 product distribution 11, 12t, 111, 289t
 wax products 597
see also HDPE; LDPE; PE; PP
polypropylene see PP
polystyrene see PS
polytetrafluoroethylene see PTFE
polyurethanes (PU)
 pyrolysis of
 gas products 293t, 295
 product distribution 290t
 products of polyester-segmented PU 335–6
 of polyether-segmented PU 336–7
 reaction mechanisms 319f, 335
poly(vinyl chloride) see PVC
poly(vinylidene chloride) (PVDC) 682
PONA (paraffins/olefins/naphthenes/aromatics) distributions 399
HDPE degradation products 87f, 143f, 145f
HDPE/PS catalytic degradation products 151f
LDPE catalytic degradation products 87f
potassium carbonate carbon composite HCl sorbent, laboratory evaluation of 509–11
pour point
 liquid fuels 155t, 156, 305, 399, 401
 lubricating base oils 351
 pyrolysis oils 304t, 674t, 685t, 698t
pour point depressants 401
PP
 calorific value 533t
 catalytic cracking of 148–9, 404
 product distribution 137f, 495, 732t
 temperature effects 746t
 various studies listed 232t, 233t
chemical structure 294f
coprocessing with petroleum distillation residues 371t
copyrolysis with brominated flame retardants 563, 564f
flash pyrolysis of 258–9, 261f
INDEX 777

fluidized-bed pyrolysis of
defluidization times 455f
effect of process variables on products 459t, 461t, 462–4
by Hamburg Process 484t, 487t, 489t, 490t
mass balance 259t, 484t, 487t
operability map 456f
gasification of 261, 262f
pyrolysis of 258–61, 324–6, 387
compared with PE pyrolysis 724
effect of steam 165f, 262f
fuel products 304t, 391t, 749t, 750t
gas products 292, 293t, 294
kinetic data 21t
oil/wax products
FT-IR spectra 296–7, 296f
molecular weight range 301f, 302t
products 11, 12, 12, 115, 259t, 260t,
261f, 289t, 324–6, 387, 388f, 731t
reaction mechanism 387, 388f, 714
various studies listed 231t
slow pyrolysis of 259–61
PP/PS mixtures, pyrolysis of 269f
PP/PVC mixtures
pyrolysis of 502–4
effect of catalyst 504, 505f, 506t, 507f
liquid products 504f, 505f, 506t, 507f
product distribution 503t, 504t
predictive carbonization model 271–2
primary recycling 111, 205, 285, 363
printed circuit boards
pyrolysis of 24, 559–62
see also electrical/electronic equipment waste
process flexibility, comparison of pyrolysis
reactor types 447t
PS
calorific value 533t
catalytic cracking of 46, 54–9, 77, 116,
232t, 233t, 406–7, 746t
product distribution 55f, 137f, 732t
reaction mechanism 54, 56–8, 59,
243–4
various studies listed 232t, 233t
chemical structure 294f
coprocessing with petroleum distillation
residues 370, 371t, 373t
effect on catalytic degradation of HDPE
149–53
flash pyrolysis of 262, 264f, 613
in free-fall reactor 617–20
fluidized-bed pyrolysis of 459t, 464, 618,
635, 636t
effect of process parameters 635t
products 636t
gasification of 263
pyrolysis of 262–4, 327, 388–9
effect of steam 165
in free-fall reactors 617–20
fuel properties 304t, 388, 391t
gas products 293t, 294
kinetic data 21t
monomer from 90, 123, 262, 301, 302,
389, 464, 618, 619f, 635, 636t
oil/wax products
chemical feedstock potential 307–8
FT-IR spectra 297–8, 297f
molecular weight range 301f, 302t
product distribution 11, 12, 12t, 90,
262t, 263t, 290t, 291t, 389, 618,
635t, 636t, 731t
various studies listed 231t
slow pyrolysis of 259–61
PP/PE mixtures, pyrolysis of 269f
PP/PET mixtures, pyrolysis of 270f
PP/PVC mixtures
pyrolysis of 270f, 502–4
liquid products 504f
product distribution 503t
Pt-HMCM-41 catalyst, hydrocracking of PE
by 63–6
Pt-HY catalyst, hydrocracking of PE by 63,
63f, 64f
Pt-HZSM-5 catalyst, hydrocracking of PE by
60–3
PTFE
filled, pyrolysis of 637–8
pyrolysis of 635–8
monomer recovered 636, 637, 638t
thermal decomposition products 12t,
636–7
publications on recycling 38
PVC
catalytic cracking of 233t, 746t, 748
chemical structure 294f
combustion of 500
construction products 194
coprocessing with petroleum distillation
residues 372–3, 374t
dechlorination of
by Ca-C sorbent 514–21, 556, 563
catalytic 96, 407, 420, 496, 505–8,
563, 720–1
chemical methods 29, 119, 123, 212,
349, 390, 397, 467, 482, 556, 673,
682, 721, 741, 748
other plastics affecting 270, 501, 502
thermal methods 5, 39, 99, 117, 210,
211, 217, 278, 294, 327, 328f,
377f, 495, 584, 696, 701–2, 741,
747
PVC (continued)

flash pyrolysis of 264, 468
fundibed pyrolysis of 438t, 468–9
in municipal waste plastics (MWP) 210t, 218t, 288f, 346f, 524, 673t, 682, 684f
plasticizers in 329
pyrolysis of 264–5, 327–9, 390–1, 720–1, 747–8
fundamental studies 498, 500–2
gas products 293t, 294
hydrogen chloride generated during 17, 19, 28, 29, 30, 77, 119, 327–8, 390, 500
kinetic data 21t
oil/wax products
chemical feedstock potential 308–9
FT-IR spectra 297, 297f
molecular weight range 301f, 302t
products 11, 12, 12t, 264t, 265t, 290t, 291, 327–9, 376, 500–1
reaction mechanisms 500, 501, 501f, 714, 715f, 720
recycling initiatives 26
slow pyrolysis of 264–5
see also PE/PVC...; PET/PVC...; PP/PVC...; PS/PVC mixtures

PVC mixed plastics
catalytic cracking of 233t, 721
dechlorination of, by Ca-C sorbent 514–21, 556
with HIPS-Br, dehalogenation by Ca-C sorbent 518–21
pyrolysis of 495–6, 514–18, 693–4, 721, 747
analysis of products 497–8, 499f
experimental procedure for study 496–7
pilot plant studies 523–5

PVDC 682
Pyrocom rotary kiln 555t, 558–9
pyrolysis 6–22, 251
of ABS 330–1, 721
advantages 384–5, 431, 494, 532–3
by-products 14–15
characteristics 253t, 287t, 605
compared with gasification 251, 275–6, 287
compared with waste-to-energy combustion 252
decomposition modes 11, 12t
economic viability 22, 36, 129
effect of catalysts 231, 710, 715–16
engineering design aspects 395–8
burner characteristics 396
centrifuges 397
dehlorination stage 397
dewaxing 398
distillation columns 397
hydrotreating 397–8
inert purge gas 396
pyrolysis chamber construction 396
pyrolysis chamber design 395, 710–11
scrubbers 397
factors affecting product distribution 8–10, 9t
fluid-mechanical aspects 18
fuel valorization by 278–9
gas products 139t, 255t, 257t, 259t, 260t, 266t, 267t, 293t, 375, 719
heat balances 20–1
industrial plants 27–32, 89–90, 123, 367–9, 407–18, 422–3, 427–9, 430, 738–44
in laboratory-scale reactors 316, 348f, 353f
limitations 209–10, 385
liquid products 317–21, 375, 603–4, 719, 721–2
liquid vs gas phase operations 19
mass balance 19–20, 136–7, 730–1, 731f, 732f
meaning of term 6, 374, 383, 533–4, 549, 709–10
of mixed plastics waste 267–71, 385
operating conditions 253t, 287t
operating margins 19–20
operational considerations 392–5
batch plants 393–4
catalytic cracking 394–5
coking prevention 392–3
continuous systems 394
corrosion prevention 393
fluid catalytic cracking 394
fluid-bed coking 394
fluidized-bed processes 394
reflux effects 393
tank/kettle reactors 393
of PE 255–8, 322–4, 387
of PET 266–7, 329, 389–90
plastics suitable for 113, 385, 710
of PP 258–61, 324–6, 387
process flow diagram 133–6
process parameters 253t, 287t, 605
product distribution 11, 12–14, 12t, 251, 286, 348f, 349f, 719–20
of PS 261–4, 327, 388–9
of PVC 264–5, 327–9, 390–1, 500–1, 720–1
INDEX

PE 713–14, 714f
PET 389f, 650, 650f, 651, 653f
PMMA 630–1, 714–15, 715f
PP 387, 388f, 714
PVC 500, 501, 501f, 714, 715f, 720

in reactive gases 9t, 10, 30–2
reactor types 15–17, 375, 448t

effect on product distribution 9, 9t
see also extruder...; fixed-bed...;
fluidized-bed...; rotary kiln...;
screw...reactors

residence time factors 9, 9t
134, 253

in steam atmosphere 162–4

suitability of various reactor types 448t

temperature effects 8–9, 9t
13
117
135, 231, 233, 385–6, 719, 745

thermodynamics 21

various studies listed 231t
see also catalytic pyrolysis; flash pyrolysis;
slow pyrolysis; thermal cracking

pyrolysis oils
applications 533f
chemical feedstock potential 309
distilled oils, properties 155t, 304t, 674t,
675f, 685t

pyrolysis products 12–14
catalytic upgrading of 99–101, 140, 722
factors affecting 8–10
value 11, 20

Pyropleq (rotary kiln) process 274t, 442t

quaternary recycling 111, 363
see also incineration

radio-frequency heating 570
random-chain scission 114, 130, 131f, 132,
292, 307, 387, 457, 464, 713–14, 714f,
735

Raney nickel catalyst 408

rapid pyrolysis see flash pyrolysis

rare earth metal exchanged Y-type zeolite

catalysts see REY catalysts

reaction mechanisms
catalytic cracking 51–3, 76, 114–15,
211, 228, 230–8, 422
aromatization steps 238, 735
formation of secondary unstable
compounds 237–8
initiation steps 51, 114, 211, 228, 230,
735
isomerization steps 237–8, 735
plastics-derived heavy oil 181, 182f
depropagation steps 130, 131f, 132, 211,
735
hydrocracking 215f, 216
hydrogen chain transfer steps 130, 131f,
238
hydrogenation 215f
initiation steps 130, 131f, 228
pyrolysis 22, 75, 113–14, 130–2, 228,
PE 713–14, 714f
PET 389f, 650, 650f, 651, 653f
PMMA 630–1, 714–15, 715f
PP 387, 388f, 714
PVC 500, 501, 501f, 714, 715f, 720
termination steps 130, 131f, 238

Reactive Energy company 586
reactor types 15–17, 86–92, 381–623
for pyrolysis 15–17, 375, 549

product distribution affected by 9, 9t
reactors, factors affecting design 85
rearrangement reactions 318, 319f, 339f
recomposing grate process 443t
recombination, chain termination by 130,
131f, 238

recycling

- cost comparison for various techniques
 705t

- packaging waste plastics 33
 data for various countries 642t
 logistics 25–6

targets
 California (USA) 345
 European Union 558t
 Japan 669t

types 6, 111
see also feedstock recycling; mechanical
recycling; primary recycling; secondary
recycling; thermal recycling

red mud catalyst 95–6
dechlorination using 407

Reentech process 423–7
capacity of plant 425
catalysts regeneration system 425, 427f
fluid catalytic cracking in 425
gasoline fraction, properties 425
process flowchart 426f
product yield 424
reflux effects, in pyrolysis 393, 417, 577

Rekisei Kouyu Co., Ltd, liquefaction plant
669t, 670

repetitive injection GC/MS studies 47

PE catalytic cracking 47–8, 48–50f,
52–3f, 61f, 63f, 65f
PS catalytic cracking 54, 55f, 57f

research octane number see RON values
INDEX

residence time 252, 253t, 287t
catalytic cracking 87f, 153, 176
fluidized-bed reactors 90, 447t, 457, 627
effect on pyrolysis products 464
heavy-oil conversion 176f, 179, 179f
pyrolysis 9, 9t, 134, 253t, 287t, 385, 605
comparison of pyrolysis types 253t, 287t, 605
comparison of reactor types 447t
rotary kilns 447t, 542, 553, 559
semi-batch reactors 87f
REY catalysts 86, 98
catalytic cracking of gasoline fraction 749
plastics-derived heavy oil cracked using 174f, 174t, 175–9, 185f, 186f, 213, 406
kinetics 180–3
reaction mechanism 181, 182f
properties 173t, 175t, 183t
Rice–Herzfeld (free radical) mechanism 22
Rice–Kossiakoff cracking mechanism 387, 388f
riser simulator reactor 90
RON (research octane number) values calculation 175–6, 317
commercial gasoline 179t, 185f
gasoline fraction
after catalytic reforming 748, 749t
from plastics-derived heavy oil 179t, 184, 185f, 213, 214, 722
from pyrolysis of plastics 324, 325, 326, 425, 748
naphtha fraction, from thermal cracking of MWP 236t
rotary kiln reactors 531–67, 711–12, 712f
advantages 547, 551, 711
compared with other reactor types 446–9t
with fluidized-bed reactors 446–9t, 534, 546–7, 553
disadvantages 547
double kiln system 550
effect of temperature on pyrolysis products 544–6
gasification in 277
industrial processes listed 274t, 439t, 442t, 443t, 554–5t, 682
principles 553
pyrolysis in 16, 273, 274t, 439t, 442t, 443t, 531–67
state-of-the-art technology 551–3, 554–5t
see also auger kiln reactor; screw kiln reactor
Royco process 422–3
features 423
heating system 423
liquid fuel yield 422
rubber, meaning of term 5
rubber plastics 331–3
thermal decomposition of 331–3
reaction mechanism 331–2
see also butadiene rubber; natural rubber; styrene–butadiene rubber
rubber waste
pyrolysis of 35
see also tyres
salt bath reactors 16t, 17
Sanyo process 17, 739t
Sapporo (Japan), municipal waste plastics 523, 524, 682, 684f
Sapporo waste plastics liquefaction plant 678–95
applications of outputs 691, 691t
calcium hydroxide added to input plastics 682, 693
composition of waste plastics 682, 684f
consumption data 688, 690t
dechlorination stage 682
energy/heat balance 688–9, 691t
environmental aspects
waste gas 692–3, 693t
wastewater 692
flow diagram 681f
heat recovery ratio 694
mass balance 687–8, 690t, 690f
off-gas from pyrolysis 682, 692–3
oils as products 682, 694
applications 694
properties 684, 685t, 686f
process description 680–2
pyrolysis of PET-/PVC-containing plastics 693–4
pyrolysis reactor 682, 683f
pyrolysis residue 682, 686
analytical composition 689t
applications 686, 694
recycling ratio 694
running costs 694–5
system flow diagram 680f
view of plant 679f
Saudi Arabia
economic evaluation of (possible) waste plastics processing plant 377–8
waste plastics data 377
SBA-15 catalyst 81
SBR
fluidized-bed pyrolysis of 460t
pyrolysis products 333
scale-up
pyrolysis processes 272
comparison of various reactor types 449t
Schwarze Pumpe gasification plant 276, 277
scraped surface heat exchangers 392
scraped-wall reactors 121, 414
screw extruder reactors 15–16, 16t, 91, 120–1
screw kiln reactors 91, 92f, 102, 195, 375, 542–4, 552
effect of temperature on LDPE degradation 542, 543t
thermal compared with catalytic degradation of LDPE 144, 146f, 544, 545t
screw pyrolysers 273–4, 712, 713f
scrubbers, pyrolysis plant 397
secondary recycling 111, 252, 286, 363
semi-batch reactors, catalytic cracking in 86, 87f, 93, 94, 123, 195
semi-continuous pyrolysis reactors 375
sewage sludge
microwave pyrolysis of 574, 583
pyrolysis of 439t, 440t, 441t, 443t, 471
shaft reactors
gasification in 276
pyrolysis in 16, 16t
Shell gasification process 23, 32, 122
shift factor (catalytic cracking) 228
shredder light fractions
pyrolysis of 552, 554t, 557
see also automobile shredder residue (ASR)
side-group elimination, in pyrolysis 501f, 714, 715f
Siemens–KWU rotary kiln process 551–2, 554t, 557
silica–alumina catalysts 80–1
deactivation by coke deposits 95, 404
dehlorination by 721
plastics-derived heavy oils 174f, 174t
polyolefins 45, 139, 148–9, 404, 406, 459t, 495
PP/PVC mixtures 504, 505f
properties 173t
PS 46, 54, 55f, 406
silica–alumina/transition metal catalysts 241–2
simulated distillation, boiling point curves 349f, 352f, 376
Slovakia, Blowdec depolymerization process 429–30
slow pyrolysis
compared with flash pyrolysis 253t, 287t, 617

dynamic method 254
characteristic parameters 257t, 260t, 263t, 267t
isothermal–static method 254
of mixed plastics waste 268–70
of PE 254t, 256–8
of PET 266–7
pilot-plant scale-up 272
of PP 259–61
predictive carbonization model 271–2
process parameters 253t, 287t, 605
of PS 262–3, 264f
of PVC 264–5
pyrolysis technologies 272–3, 273–4
Smuda process
advantages 416, 417
agitator speed 396, 416, 417
catalysts 416
coke removal in 393, 417
compared with Thermofuel process 418
distillation column 416
fuels produced by 414, 418
hydrotreating stage 398
plastics suitable for 416
reflux return in 417
shortcomings 416, 417–18
stirred-tank reactor 415f
sodium carbonate, dechlorination by 349, 397, 741, 748
solid acid catalysts 46, 80–1, 118, 172, 195–6, 211
PP/PVC mixture degraded by 505, 506t, 507f
see also silica–alumina catalyst
solid alkalis, as catalysts 243–4
solvents, coprocessing with plastics 103
solvolysis, of PET 643–9
sorting of plastics waste 26, 252
spouted-bed reactors 90–1, 394
steam
as carrier gas 88, 162
effect on catalytic cracking of plastics-derived heavy oil 183–8
effect on fluidized-bed pyrolysis of polyolefins 483, 486t, 742
effect on polyester pyrolysis 163–72, 183
steam gasification
of PE 258
of PP 261
syngas produced using 276, 279
stirred heat-medium-particles reactors 394
bench-scale reactor 168–72
pilot plant 188–90
stirred-tank reactors 16, 16t, 393, 395, 408f, 415f, 427, 672
styrene
as diesel pour point depressant 401
from catalytic cracking of PS 55f, 56, 116, 151–2, 243
from pyrolysis of PS 90, 123, 262, 301, 302, 389, 464, 618, 619f, 635, 636f
from pyrolysis of SBR 333, 460f
styrene–butadiene rubber see SBR
styrene copolymers
pyrolysis of
fuel properties of oils produced 304f
oil/wax products, chemical feedstock potential 307
product distribution 329–31
sublimate compounds 161, 165, 390, 693
sulfur content
fuel oils 155f, 156, 305f
pyrolysis oils and distillates 304f, 429f, 674f, 685f, 698f
sulfur oxides emissions, Thermofuel diesel 413
Sumitomo Metal Industries gasification system 34
supercritical water
pyrolysis in 737, 748
rubber waste treated by 35
superheated steam, polyolefin pyrolysis using 599, 600, 603
supply logistics, plastics waste collection and recycling 25–6
syncrude, production of 31, 369, 377, 537
syngas (synthesis gas)
heating values 276, 279
production of 8, 34, 74, 120, 276, 278, 367
syringes, fluidized-bed pyrolysis of 483f
take-back schemes 6, 33, 34f
Takuma SBV process 443f
tank reactors 16, 16t, 393
tar formation, in gasification 276
Teijin Fiber Ltd, PET recycling by 37, 647
television circuit boards
pyrolysis of 562f
see also electrical/electronic equipment
waste
temperature effects
catalytic cracking 93–4, 139–41, 231, 404, 745, 746f
Conrad process 539f
dechlorination capacity of Ca-C sorbent 511–12, 512f
heavy-oil conversion 176–9
pyrolysis 8–9, 9f, 13t, 117t, 135, 231, 233, 719, 745
PE 255, 255f, 256f, 257t, 258, 258f
in rotary kiln reactors 544–6
temperature profile, comparison of pyrolysis reactor types 446t
temperature range, comparison of pyrolysis reactor types 446t
temperature-programmed desorption (TPD) method, acidity of catalysts measured by 173, 196
terephthalic acid
catalytic cracking of 165, 166–7
as PET monomer feedstock 164, 643
reaction with ethylene glycol 643
recovery from PET 164, 389, 464, 540, 647–9, 658–9
sublimation of 161, 165, 390, 693
tertiary recycling 111, 363
economic considerations 124
see also catalytic cracking; feedstock recycling; pyrolysis
tetrafluoroethylene, from PTFE pyrolysis 636, 637, 638f
Tetrapak material, pyrolysis of 573, 580–1
Texaco gasification process 23, 32, 277–8, 367, 368f
thermal analysis 7
thermal conductivity, plastics 21
thermal cracking 225, 385–6, 736
compared with catalytic cracking 74–7, 116, 118, 133, 194, 383–6, 736–7
disadvantages 209–10, 385
features 736
reaction mechanisms 22, 75, 113–14, 130–2, 228, 456–7, 734–5
temperature effects 745
various studies listed 231f, 458–61f
see also pyrolysis
thermal dehalogenation 24, 39, 99, 117, 210, 211, 217
thermal recycling 6
thermocatalytic degradation 225
see also catalytic pyrolysis
Thermofuel process 407–14, 724
agitator speed 396
basic steps 407–8
catalytic converter/reaction tower 408, 410f, 411, 724
coke removal in 393, 414
compared with other processes 418, 422
diesel fuel produced by 411f, 413
flow diagram 409f
plants in Japan 411–12
pyrolysis chamber 407, 408f, 413
emissions from 414
thermogravimetric analysis (TGA) 7
catalytic cracking studied by 85–6, 197f, 199, 226
curves
PET in nitrogen and steam atmospheres 163f
various plastics in nitrogen and steam atmospheres 164, 165f
limitations 199
microwave pyrolysis apparatus 575–6
thermolysis see pyrolysis
thermomechanical testing 7
thermoplastics
chemical structure 294f
meaning of term 5, 187, 364
see also HDPE; LDPE; nylons; PE; PET; PP; PS; PVC
thermosets
chemical structure 294f
meaning of term 5, 287
pyrolysis of 290t, 291
oil/wax products
chemical feedstock potential 309
FT-IR spectra 298, 299f, 300
see also epoxy resin; phenolic resin
time factors
catalytic cracking 153, 176
heavy-oil conversion 176f, 179, 179f
pyrolysis 9, 9t, 134
see also residence time
tipping fees
in economic appraisal 350, 359
see also gate fees
tire see tyre...
toluene
from pyrolysis
of PET 266
of PS 619f
of PVC 264
toothpaste tube laminate, microwave pyrolysis of 573, 578f, 580–1, 581f
Toshiba pyrolysis processes 443t, 678, 748
TPD see temperature-programmed desorption
T.R. Environ Tech Co. Ltd 586
transition metal based catalysts 416
see also iron...; nickel...
transition metal catalysts, on activated carbon support 84, 103f, 149
transition metal oxide catalysts, cracking of PET by 166–8, 747
transportation costs, waste plastics 705
transportation fuels
conversion of waste plastics 346–50, 358–9
feasibility study 350
see also diesel; gasoline; kerosene
treatment costs 26t, 36
tubular reactors 16, 116, 121, 175, 234
TwinRec process 440t, 469–71
see also Hunan University process; Likun process; Thermofuel process
two-stage pyrolytic gasification processes 258, 261, 263
tyre rubber 5, 35
tyres
composition of 35, 574
pyrolysis of 35, 273, 274, 274t, 333, 550–1
in fluidized-bed reactors 460t, 466, 480–2, 489–90
by microwave pyrolysis 35, 573–4, 583, 585, 586
products 278t, 279t, 483t
in rotary kilns 550–1, 552, 554t, 555t
recycling of 35, 573–4
vacuum pyrolysis of 35, 723–4
waste data for various countries 573

Ube Industries (Japan), gasification plant 23
Ube-Ebara gasification plants 8, 37, 669t
ultra-fast pyrolysis
of polyalkenes/polyolefins
gas products 293t
product distribution 289t, 291
process parameters 287t
United Carbon process 739t, 743
United Resource Recovery Corporation
PET hydrolysis process 648
PET recycling process 643
UnPET process 648
unzipping reactions 11, 12t, 457, 725
updraft gasifiers 276, 277
URRC process 643
US-Y zeolite
catalytic cracking by 95, 196, 213, 226, 404, 495, 717
boiling point distribution of liquid product 204f
initial degradation mechanism 199–201
liquid product produced 203, 204
olefinic/paraffinic hydrogen ratio 203
USA
lubricating oil waste 351
recycling of PET bottles 642t
waste plastics data 345, 363, 532
waste-to-energy (WTO) facilities 124
USS process 739t, 744
vacuum gas oil (VGO) coprocessed with plastics 90, 102, 113, 119, 217, 232t, 373, 374t
hydrocracking of 216
vacuum pyrolysis 396 of polyolefins 289t, 290t process parameters 287t of tyres 35, 723–4 vacuum residues 365 properties 365t upgrading to fuel oils 369, 377–8
see also petroleum residues value of products comparison of pyrolysis reactor types 448t
gas products 194 Veba Combi Cracking (VCC) technology 30, 369, 377 Veba Oel pyrolysis process 23, 30–1, 443t, 534–7, 729, 738, 739t, 748 coal-to-oil conversion using 30, 369 for coprocessing of vacuum residues with waste plastics 118, 377–8 distillation residues processed using 369 flow diagram 535f mixed plastics waste processed using 30–1, 377, 353–7 vinyl polymers pyrolysis of 326–9 see also PS; PVC; PVDC viscosity fuel oils 155t, 305t pyrolysis products 155t, 304t, 305, 429t, 674t, 685t, 698t viscosity index, lubricating base oils 351 Von Roll RCP process 443t vortex ablative pyrolytic reactor 275 VTA rotary kiln process 274t, 551, 555t advantages 551 vulcanized rubber 5, 365 see also rubber; tyres waste from electrical and electronic equipment (WEEE) collection and recycling of 25, 26, 34, 391 EU directive on 33, 558 plastics in 337 pyrolysis 35, 337–41 fluidized-bed 438t, 440t, 466, 469, 470 rotary kiln 552–3, 555t, 559–62 see also printed circuit boards waste management collection systems 24–5, 667 logistics problems 25–6, 32, 704–5 ethical and political considerations 37–8 in Europe 33, 35–6 in Japan 36–7, 666–7 plastics pyrolysis as option 35–9 environmental aspects 38 safety aspects 38 plastics waste 33–5 principles 32 rubber waste 35 waste oils amount dumped in USA 351 coprocessed with plastics 102–3, 119, 125 waste plastics European data 73, 209, 363 Japanese data 209, 667, 668t Saudi Arabian data 377 US data 345, 363, 532 see also plastics waste waste prevention/reduction strategies 23 waste-to-energy (WTO) plants 439t, 440t, 441t, 469, 494, 553, 555t compared with pyrolysis plants 252 in USA 124 waxes catalytic cracking of 171, 212–13 from coprocessing of MWP/HVGO blend 218t pyrolysis-derived 212, 295–309, 597 chemical feedstock potential 306 FT-IR analysis 296–300 molecular weight range 300–4 properties 213t, 302t thermal cracking of 603 uses 295, 304, 597 WEEE see waste from electrical and electronic equipment weight average molecular weight meaning of term 300 for various pyrolytic oils and waxes 302t Williams–Landel–Ferry equation 228 wood carbonization 251, 287 Z3A Process and Technology 586 Zadgaonkar dechlorination process 721 Zadgaonkar depolymerization process 724–7 advantages 727 analytical section 727 commercial plant 727 condenser section 727 dechlorination section 725 features 727 feed system 725 flow diagram 726f
gas products 727
liquid products 727
reactor 725
zeolite catalysts 717
advantages 147, 239
dewaxing by 398
limitations with PVC-containing wastes 405
molecular structure 80, 195–6, 239
physicochemical properties 80t, 240t
polyolefin cracking by 45, 46–54, 76f, 118, 140, 148–9, 195, 404
pyrolysis gases cracked by 140
silicon/aluminium ratio 80t, 240t

see also HY; HZSM-5; MFI type; REY; US-Y; ZSM-5

zeolite Y (type FAU) catalyst
physicochemical properties 80t, 196, 240t, 717
polyolefin cracking by 148, 149, 722
see also HY
zirconia, sulfated, catalytic cracking by 54, 55f, 57f, 84, 147, 749
ZSM-5 zeolite catalyst
coprocessing of distillation residues with waste plastics 370, 371–2t, 374t
PE cracking by 148, 149, 404
physicochemical properties 80t, 196, 240
upgrading of plastics-derived gasoline 722
see also HZSM-5

With thanks to Paul Nash for the compilation of this index.