Contents

Preface
xiii
Contributors
xv

1 **Introduction**
Nicholas Dege

1.1 Background
1
1.2 The third edition
2

2 **Market Development of Bottled Waters**
Duncan Finlayson

2.1 Introduction
5
2.2 The historical background
6
2.3 Market segmentation
7
2.4 Global giants and local leaders
11
2.5 Global review
13
2.6 USA
16
2.7 West Europe into the new millennium
17
2.8 China
21
2.9 Bottled water and the environment
23
2.10 Flavoured and functional waters
26
2.11 Trends for the future
30
References
31
Further reading
31

3 **Categories of Bottled Water**
Nicholas Dege

3.1 Introduction
33
3.2 Europe
35
3.2.1 Natural mineral waters (NMWs)
36
3.2.2 Spring water (SW)
45
3.2.3 Other bottled waters in Europe
46
3.2.4 Implementation of the Directives in Europe
46
3.3 North America
50
3.3.1 United States
50
3.3.2 Canada
58
3.4 Codex Alimentarius
62
3.4.1 Codex and Natural Mineral Waters
62
3.4.2 Codex and non-Natural Mineral Waters
63
3.5 Russia
 3.5.1 Bottled mineral water
 3.5.2 Bottled drinking water
3.6 Latin America
 3.6.1 Argentina
 3.6.2 Brazil
 3.6.3 Mexico
3.7 Australia and New Zealand
3.8 Asia
3.9 South Africa
 3.9.1 Natural waters
 3.9.2 Waters defined by origin
 3.9.3 Prepared waters
3.10 Conclusions
Acknowledgements
References

4 Hydrogeology of Bottled Waters
Mike Streetly, Rod Mitchell, Melanie Walters and Peter Ravenscroft

4.1 Introduction
4.2 Understanding underground water – Hydrogeology
 4.2.1 Underground water – a key part of the water cycle
 4.2.2 Recharge to underground water
 4.2.3 Groundwater occurrence
 4.2.4 Water levels and groundwater flow
 4.2.5 Storage of water in aquifers
 4.2.6 Wells, springs and boreholes
 4.2.7 Flow to wells and boreholes
4.3 Groundwater quality
 4.3.1 Hydrochemistry – the history of a groundwater
 4.3.2 Terms, definitions and concepts
 4.3.3 Hardness and alkalinity
 4.3.4 Evolution of groundwaters
 4.3.5 Human influences on groundwater
 4.3.6 Hydrochemical classification of bottled waters
4.4 Groundwater source development
 4.4.1 Stages of development
 4.4.2 Resource evaluation
 4.4.3 Source definition
 4.4.4 Source construction
 4.4.5 Variation of aquifer properties with depth
4.5 Management of groundwater sources
 4.5.1 Record keeping
 4.5.2 Monitoring, maintenance and rehabilitation
 4.5.3 Sampling and water quality analysis
 4.5.4 Monitoring borehole yield
Contents

4.5.5	Changes in water quality	131
4.5.6	Control of resource exploitation	132
4.6	Protecting groundwater quality	133
4.6.1	Changing policies and perspectives	133
4.6.2	Source protection zones	133
4.6.3	Hazard identification and mapping	135
4.6.4	Groundwater vulnerability and natural attenuation	135
4.6.5	Wellhead protection	136
4.6.6	Risk assessment and catchment management	137
References	138	

5 Water Treatments

Jean-Louis Croville, Jean Cantet and Sébastien Saby

5.1	Why and when water must be treated	141
5.1.1	Compliance with local regulations	141
5.1.2	Quality reasons	141
5.1.3	Marketing reasons	142
5.2	Water treatment objectives	142
5.2.1	Removal of undissolved elements	142
5.2.2	Removal/inactivation of undesirable biological elements	142
5.2.3	Removal of undesirable and/or unstable chemical elements	142
5.2.4	Addition of ‘valuable’ elements	144
5.3	Water treatment processes	144
5.3.1	Filtration	144
5.3.2	Adsorption	156
5.3.3	Ion exchange	158
5.3.4	Chemical oxidation	161
5.3.5	Biological processes	163
5.3.6	Remineralisation	164
5.3.7	Microbiological treatments	165
5.4	Conclusions	172
References	174	
Further reading	174	

6 Bottling Water – Maintaining Safety and Integrity through the Process

Dorothy Senior and Nicholas Dege

6.1	The nature of water	175
6.1.1	Physical properties	175
6.1.2	Chemical properties	176
6.1.3	Biological properties	176
6.2	Influencing factors	177
6.2.1	Materials in contact with water	177
6.2.2	Plant equipment	177
6.2.3	Filters	179
6.2.4	Carbon dioxide	180
6.2.5 Process air 181
6.2.6 Packaging formats 181
6.3 Labelling 188
6.4 Shelf-life, batch coding and traceability 189
6.5 Hygiene and good manufacturing practices 191
6.5.1 Buildings and facilities 191
6.5.2 Maintenance activities 192
6.5.3 Layout and process flow 192
6.5.4 Ancillary facilities 193
6.5.5 Cleaning and disinfection 194
6.5.6 Personnel 194
Reference 195
Further reading 195

7 Bottle Manufacture and Filling Equipment 197
Manfred Faltermeier
7.1 Introduction 197
7.2 PET bottles – one of the most important packages for water 199
7.2.1 PET bottle manufacture – process technology 200
7.3 Filling technology 203
7.3.1 The construction of a filler 203
7.3.2 Filling principles 205
7.3.3 Filling technology for carbonated products 208
7.3.4 Filling technology for non-carbonated products 211
7.3.5 The filling operation 212
7.3.6 Filler configuration 213
7.3.7 Aseptic line concepts 215
7.3.8 Monitoring and inspection technology 217
7.3.9 CIP cleaning of filling systems 218
7.4 Carbonation and flavour addition prior to filling 220
Further reading 222

8 Cleaning and Disinfection in the Bottled Water Industry 223
Winnie Louie and David Reuschlein
8.1 Introduction 223
8.1.1 Why clean? 225
8.2 Cleaners (detergents) 226
8.2.1 Chemistry of cleaning 227
8.2.2 The five factors 229
8.2.3 Types of cleaner (detergents) 231
8.3 Sanitizers 231
8.3.1 Regulatory considerations 233
8.3.2 Types of sanitizers and their uses 234
8.3.3 Maximizing effectiveness 240
8.3.4 New chemical technology for water and energy saving 241
8.4 Types of cleaning and basics 242
8.4.1 Cleaning dynamics 242
8.4.2 Brush Program – guidelines on the proper use of brushes in bottling plants 245
8.4.3 Master sanitation schedule 246
8.4.4 Sanitation Standard Operating Procedures (SSOPs) 247
8.5 Cleaning in place (CIP) 247
 8.5.1 Automated CIP 250
 8.5.2 Types of CIP systems 251
 8.5.3 CIP control and data acquisition 255
 8.5.4 CIP program and programming 255
 8.5.5 Hot CIP safety precautions 257
8.6 General guidelines for conducting a cleaning and sanitation validation 258
8.7 The do’s and don’ts of cleaning and disinfection 260
Acknowledgments 263
Appendix 1 – calculations for establishing minimum flow rates for cleaning cylindrical vessels 263
Appendix 2 – questions to ask when choosing between a dedicated controller and a PLC based controller 264
Appendix 3 – glossary of terms 265
9 Quality Management 267
Dorothy Senior and Nicholas Dege
 9.1 Introduction 267
 9.2 Defining quality 267
 9.3 Quality policy 267
 9.4 Food safety standards and hazard analysis critical control point 268
 9.5 Process control 271
 9.5.1 Packaging materials in process 272
 9.5.2 Product water in process 275
 9.6 Quality assurance 277
 9.6.1 Microbiological assessment 277
 9.6.2 Assessment during shelf-life 279
 9.6.3 New product development 279
 9.6.4 Sensory evaluation 280
 9.6.5 Auditing 280
 9.6.6 Calibration 281
 9.6.7 Accreditation 281
 9.7 Independent or government laboratories 281
 9.8 Recognition of source 283
 9.9 Industry networking 283
References 284
Further reading 284
10 Bottled Water coolers 285
Michael Barnett
 10.1 Introduction 285
 10.2 World markets 285
 10.2.1 Europe 285
10.2.2 Middle East 287
10.2.3 Asia 287
10.2.4 Australia and New Zealand 288
10.2.5 Central and South America 289
10.2.6 North America 289
10.3 Equipment development 289
 10.3.1 Dispensers 289
 10.3.2 Bottles 296
10.4 Water categories for watercoolers 299
10.5 The bottling process 300
10.6 Handling, transportation and service 302
10.7 Hygiene 303
10.8 Trade associations 305
Acknowledgements 306

11 Third-Party Auditing of Bottled Water Operations 307
Bob Tanner
 11.1 Introduction 307
 11.2 Conduct of audits 308
 11.3 Setting the criteria for the audit 309
 11.4 The bottling plant audit 310
 11.4.1 The source 311
 11.4.2 Pipeline and raw water storage 312
 11.4.3 Exterior of bottling plant 313
 11.4.4 Plant construction and design 313
 11.4.5 Water treatment and primary packaging 313
 11.4.6 Filling, capping and labelling 314
 11.4.7 Lighting and ventilation 315
 11.4.8 Warehouse, product storage and transport 315
 11.4.9 Pest control 316
 11.4.10 Personnel 316
 11.4.11 Laboratory 317
 11.4.12 Product traceability and bio-terrorism 317
 11.5 Conclusion of audit and follow-up actions 317

12 Microbiology of Natural Mineral Waters 319
Henri Leclerc and Milton S. da Costa
 12.1 Introduction 319
 12.2 Groundwater habitat 320
 12.2.1 Physical component 320
 12.2.2 Chemical component 322
 12.2.3 Biological component: source of microflora 323
 12.2.4 Limits of microbiological studies 324
 12.2.5 Major microbiological groups 326
 12.2.6 Nutrient limitations and starvation survival 329
 12.2.7 The viable but non-culturable state 330
12.3 Bottle habitat 331
 12.3.1 The bottle effect 331
 12.3.2 Other factors influencing the plate count 333
 12.3.3 Growth or resuscitation 334
 12.3.4 Genetic diversity before and after bottling 336

12.4 Microbial community 337
 12.4.1 Algae, fungi and protozoa 338
 12.4.2 Heterotrophic bacteria 338
 12.4.3 Prosthecate bacteria 339
 12.4.4 Pseudomonads, Acinetobacter, Alcaligenes 340
 12.4.5 Cytophaga, Flavobacterium, Flexibacter 342
 12.4.6 Gram-positive bacteria 343

12.5 Inhibitory effect of autochthonous bacteria 344

12.6 Assessing health risk from autochthonous microflora 349
 12.6.1 Inoculation of the digestive tract of axenic mice 350
 12.6.2 Randomized trials in infants 350
 12.6.3 Virulence characteristics of bacteria 351

12.7 Assessment and management of microbial health risks 352
 12.7.1 Identifying microbial hazards in drinking water 353
 12.7.2 Assessment of microbial risks 354
 12.7.3 Management of microbial risks 355

12.8 Conclusion 358

References 360

Further reading 370

13 Microbiology of Treated Bottled Water 371
 Stephen C. Edberg and Manuel A. Chaidez
 13.1 Introduction 371
 13.2 Source water protection and monitoring 371
 13.3 Water treatment 372
 13.4 Naturally occurring bacteria 375
 13.5 Product safety 378
 13.6 Summary 382

References 382

14 Formulation and Production of Flavoured and Functional Waters 385
 Fred Jones
 14.1 Introduction 385
 14.2 Composition 386
 14.2.1 Ingredients 386
 14.2.2 Ingredient search 391
 14.2.3 Ingredient sources and supply 391
 14.3 Formulation 393
 14.3.1 Measurements 393
 14.3.2 Usage levels 394
 14.3.3 Ingredient interactions 394
14.3.4 General comments for developers 396
14.3.5 Ingredient quality 397

14.4 Production 397
14.4.1 Where to manufacture? 397
14.4.2 Packaging options and impact on production choice 398
14.4.3 Microbiological safety and commercial sterility 398
14.4.4 Production processes 399
14.4.5 Finished product testing 403

14.5 On sale 404
14.5.1 Ingredient declarations 404
14.5.2 Labelling and functionality claims 404
14.5.3 Allergens 404
14.5.4 Shelf-life evaluation 405

14.6 New and developing technologies 405
14.6.1 Proportioning of ingredients 405
14.6.2 Ambient carbonation 405
14.6.3 Sterile dosing of flavours 406

14.7 Conclusions 406

15 Environment 407
Tod D. Christenson and John V. Stier

15.1 Introduction 407
15.2 Environmental standards 409
15.3 Expectations for corporate environmental stewardship 409
15.4 Bottled water value chain 415
15.5 Life-cycle assessment methodologies 418
15.6 Primary environmental issues 420
15.7 Water resources 421
15.7.1 Water use and conservation practices 421
15.7.2 Water-related business risks 424
15.7.3 Water footprinting 424
15.8 Climate change and energy 425
15.8.1 The energy and carbon footprint of bottled water 426
15.8.2 Energy and carbon reduction best practice efforts 428
15.9 Solid waste management 430
15.10 Beverage industry environmental roundtable 433
15.11 Closing 434
Acknowledgments 434
References 435
Further reading 436

Index 437
A color plate section falls after page 144