Contents

List of Illustrations, ix
List of Instruction Sheets, xiv
Preface, xvi
Acknowledgements, xviii
Units and Abbreviations, xix

Part 1 Introduction

Chapter 1 Occupational Hygiene and Risk Assessment, 3
 1.1 Introduction, 3
 1.2 Hazard and risk, 7
 1.3 Risk assessment, 7
 1.4 The stages of a risk assessment, 8
 1.5 Who should carry out risk assessment, 12

Chapter 2 Identifying Hazards, 13
 2.1 Introduction, 13
 2.2 Identifying hazards, 13
 2.3 Example of hazard identification, 15
 2.4 Conclusions arising from a hazard assessment, 16

Chapter 3 Exposure, Exposure Routes and Biological Monitoring, 18
 3.1 Introduction, 18
 3.2 Measuring exposure, 21
 3.3 Biological monitoring, 22
 3.4 Exposure assessment: what the legislation requires, 22
 3.5 Conclusions, 23

Chapter 4 The Exposure Context, 25
 4.1 Context for measurement, 25
 4.2 Sources of hazardous substances, 25
Contents

4.3 Dispersion through the workroom, 27
4.4 Receptor, 29
4.5 Jobs and tasks, 29

Chapter 5 Why Measure?, 31
5.1 Introduction, 31
5.2 Reasons for undertaking monitoring, 31

Chapter 6 How to Carry Out a Survey, 34
6.1 Introduction, 34
6.2 Planning the survey, 34
6.3 Workplace monitoring, 35
6.4 Monitoring strategies, 37
6.5 Quality assurance and quality control, 39
6.6 Survey checklists, 41

Chapter 7 Analysis of Measurement Results, 48
7.1 Introduction, 48
7.2 Dealing with variability in measurement results, 48
7.3 Summary statistics and data presentation, 50

Chapter 8 Hygiene Reports and Records, 53
8.1 Measurement records, 53
8.2 Survey reports, 55

Part 2 Inhalation Exposure

Chapter 9 Dust and Fibrous Aerosols, 63
9.1 Introduction, 63
9.2 Airborne dust, 63
9.3 Fibres, 65
9.4 Measurement of airborne dust levels, 66
9.5 Measurement of flow rate, 73
9.6 Pumps, 74
9.7 Direct-reading aerosol monitors, 75
9.8 Calibration of a rotameter or electronic flow calibrator by using the soap-bubble method, 76
9.9 The measurement of inhalable airborne dust, 80
9.10 The measurement of airborne respirable dust by using a cyclone sampler, 83
9.11 The sampling and counting of airborne asbestos fibres, 84
9.12 The choice of filter and filter holder to suit a specific dust, fume or mist, 88
9.13 To trace the behaviour of a dust cloud by using a Tyndall beam, 89
Chapter 10 Gases and Vapours, 92
 10.1 Introduction, 92
 10.2 Collection devices, 94
 10.3 Containers, 100
 10.4 Direct-reading instruments, 101
 10.5 To measure personal exposure to solvent vapours using an adsorbent tube, 102
 10.6 Sampling for gases by using a bubbler, 104
 10.7 To measure the short-term airborne concentration of a gas by using a colorimetric detector tube, 106
 10.8 To measure a vapour concentration using a diffusive sampler, 108

Chapter 11 Bioaerosols, 111
 11.1 Introduction, 111
 11.2 Classification of microorganisms, 112
 11.3 Viruses, 112
 11.4 Bacteria, 113
 11.5 Moulds and yeasts, 114
 11.6 Allergens, 115
 11.7 Principles of containment, 115
 11.8 Handling microorganisms, 116
 11.9 Monitoring bioaerosols, 117
 11.10 Measurement of endotoxins and allergens, 120
 11.11 Interpretation of sample results, 121

Part 3 Dermal and Ingestion Exposure

Chapter 12 Dermal and Ingestion Exposure Measurement, 125
 12.1 Introduction, 125
 12.2 Occupations where dermal exposure is important, 125
 12.3 Local and systemic effects, 126
 12.4 How do we know if dermal exposure is an issue?, 127
 12.5 What do we measure?, 128
 12.6 Methods for dermal exposure measurement, 129
 12.7 Sampling strategy, 132
 12.8 Liquids and solids, 132
 12.9 Biomonitoring and modelling of dermal exposure, 134
 12.10 From exposure to uptake, 135
 12.11 Controlling dermal exposure, 136
 12.12 Inadvertent ingestion exposure, 136

Part 4 Physical Agents

Chapter 13 Noise, 143
 13.1 Introduction, 143
Contents

13.2 Pressure and magnitude of pressure variation, 143
13.3 Frequency, 144
13.4 Duration, 147
13.5 Occupational exposure limits, 147
13.6 Equipment available, 148
13.7 Sound level meters and personal noise dosimeters, 148
13.8 Personal noise dosimeters, 151
13.9 Calibration, 152
13.10 To measure workplace noise using a SLM, 153
13.11 To measure workplace noise using a PND, 155
13.12 To measure the spectrum of a continuous noise by octave band analysis, 157
13.13 To determine the degree of noise exposure and the actions to take, 159

Chapter 14 Vibration, 161
14.1 Introduction, 161
14.2 Vibration, 163
14.3 Occupational exposure limits, 165
14.4 Risk assessment, 165
14.5 Measurements and measurement equipment, 166
14.6 To measure hand–arm vibration, 167
14.7 Control of vibration, 171

Chapter 15 Heat and Cold, 173
15.1 Introduction, 173
15.2 Heat stress, 175
15.3 Measurement equipment, 176
15.4 Personal monitoring, 181
15.5 Measurement of the thermal environment, 182
15.6 Predicted Heat Strain Index, 185
15.7 Risk assessment strategy, 186
15.8 Cold, 188
15.9 To calculate the wind chill factor, 189

Chapter 16 Lighting, 191
16.1 Introduction, 191
16.2 Lighting Standards, 192
16.3 Equipment available, 193
16.4 Calibration, 193
16.5 To measure lighting, 194
16.6 Control, 197

Chapter 17 Ionising Radiation, 199
17.1 Introduction, 199
17.2 Ionising radiation, 200
17.3 Background radiation, 201
17.4 Basic concepts and quantities, 201
17.5 Types of radiation, 202
17.6 Energy, 204
17.7 Activity, 204
17.8 Radiation dose units, 205
17.9 Dose limits, 206
17.10 Derived limits, 207
17.11 Procedures to minimise occupational dose, 207
17.12 Personal dosimetry and medical surveillance, 209

Chapter 18 Non-Ionising Radiation, 216
18.1 Introduction, 216
18.2 Ultraviolet radiation, 218
18.3 Infrared radiation, 220
18.4 Microwaves and radiowaves, 220
18.5 Lasers, 222

Part 5 Assessing the Effectiveness of Control

Chapter 19 Introduction to Control, 227
19.1 Introduction, 227
19.2 Specific control measures, 228
19.3 The effectiveness of control measures, 231

Chapter 20 Ventilation, 233
20.1 Introduction, 233
20.2 Air pressure, 234
20.3 Measurement equipment, 235
20.4 Ventilation measurement records, 242
20.5 Measurement of air flow in ducts, 246
20.6 Measurement of pressure in ventilation systems, 252
20.7 To measure the face velocity on a booth or hood, 254
20.8 To measure the face velocity on a fume cupboard, 255
20.9 To measure the performance of a suction inlet, 257

Chapter 21 Personal Protective Equipment, 260
21.1 Introduction, 260
21.2 Components of an effective PPE programme, 260
21.3 Face-fit testing using a particle counter, 269

Part 6 Risk Assessment and Risk Communication

Chapter 22 Risk Assessment, 275
22.1 Introduction, 275
22.2 Identify all hazardous substances or agents, 276
Contents

22.3 Identify the likely levels of exposure, 276
22.4 Identify all persons likely to be exposed, 278
22.5 Assess whether the exposures are likely to cause harm, 279
22.6 Consider elimination or substitution, 279
22.7 Define additional control measures necessary to reduce the harm to acceptable levels, 280

Chapter 23 Risk Communication, 282
23.1 Introduction, 282
23.2 Risk perception, 282
23.3 Trust, 283
23.4 Communication, 284
23.5 An example of quantitative risk assessment to aid risk communication, 285

Equipment Suppliers, 288
Chemical Analytical Services, 290
Index, 291