Contents

Preface xi

Acknowledgements xii

1 Introduction 1
 1.1 Finance insights 1
 1.2 Asset price assumptions 2
 1.3 Mathematical and statistical problems 2
 1.4 Numerical methods 2
 1.5 Excel solutions 3
 1.6 Topics covered 3
 1.7 Related Excel workbooks 5
 1.8 Comments and suggestions 5

Part One Advanced Modelling in Excel 7

2 Advanced Excel functions and procedures 9
 2.1 Accessing functions in Excel 9
 2.2 Mathematical functions 10
 2.3 Statistical functions 12
 2.3.1 Using the frequency function 12
 2.3.2 Using the quartile function 14
 2.3.3 Using Excel’s normal functions 15
 2.4 Lookup functions 16
 2.5 Other functions 18
 2.6 Auditing tools 19
 2.7 Data Tables 20
 2.7.1 Setting up Data Tables with one input 20
 2.7.2 Setting up Data Tables with two inputs 22
 2.8 XY charts 23
 2.9 Access to Data Analysis and Solver 26
 2.10 Using range names 27
 2.11 Regression 28
 2.12 Goal Seek 31
<table>
<thead>
<tr>
<th>Contents</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.1 Using VBA functions in user-defined functions</td>
<td>85</td>
</tr>
<tr>
<td>4.8.2 Add-ins</td>
<td>86</td>
</tr>
<tr>
<td>4.9 Pros and cons of developing VBA functions</td>
<td>86</td>
</tr>
<tr>
<td>Summary</td>
<td>87</td>
</tr>
<tr>
<td>Appendix 4A Functions illustrating array handling</td>
<td>88</td>
</tr>
<tr>
<td>Appendix 4B Binomial tree option valuation functions</td>
<td>89</td>
</tr>
<tr>
<td>Exercises on writing functions</td>
<td>94</td>
</tr>
<tr>
<td>Solution notes for exercises on functions</td>
<td>95</td>
</tr>
</tbody>
</table>

Part Two Equities 99

5 Introduction to equities 101

6 Portfolio optimisation 103
 6.1 Portfolio mean and variance 103
 6.2 Risk–return representation of portfolios 105
 6.3 Using Solver to find efficient points 106
 6.4 Generating the efficient frontier (Huang and Litzenberger’s approach) 109
 6.5 Constrained frontier portfolios 111
 6.6 Combining risk-free and risky assets 113
 6.7 Problem One—combining a risk-free asset with a risky asset 114
 6.8 Problem Two—combining two risky assets 115
 6.9 Problem Three—combining a risk-free asset with a risky portfolio 117
 6.10 User-defined functions in Module1 119
 6.11 Functions for the three generic portfolio problems in Module1 120
 6.12 Macros in ModuleM 121
 Summary 123
 References 123

7 Asset pricing 125
 7.1 The single-index model 125
 7.2 Estimating beta coefficients 126
 7.3 The capital asset pricing model 129
 7.4 Variance–covariance matrices 130
 7.5 Value-at-Risk 131
 7.6 Horizon wealth 134
 7.7 Moments of related distributions such as normal and lognormal 136
 7.8 User-defined functions in Module1 136
 Summary 138
 References 138

8 Performance measurement and attribution 139
 8.1 Conventional performance measurement 140
 8.2 Active–passive management 141
 8.3 Introduction to style analysis 144
Contents

8.4 Simple style analysis 145
8.5 Rolling-period style analysis 146
8.6 Confidence intervals for style weights 148
8.7 User-defined functions in Module1 151
8.8 Macros in ModuleM 151
Summary 152
References 153

Part Three Options on Equities 155

9 **Introduction to options on equities** 157
9.1 The genesis of the Black–Scholes formula 158
9.2 The Black–Scholes formula 158
9.3 Hedge portfolios 159
9.4 Risk-neutral valuation 161
9.5 A simple one-step binomial tree with risk-neutral valuation 162
9.6 Put–call parity 163
9.7 Dividends 163
9.8 American features 164
9.9 Numerical methods 164
9.10 Volatility and non-normal share returns 165
Summary 165
References 166

10 **Binomial trees** 167
10.1 Introduction to binomial trees 167
10.2 A simplified binomial tree 168
10.3 The Jarrow and Rudd binomial tree 170
10.4 The Cox, Ross and Rubinstein tree 173
10.5 Binomial approximations and Black–Scholes formula 175
10.6 Convergence of CRR binomial trees 176
10.7 The Leisen and Reimer tree 177
10.8 Comparison of CRR and LR trees 178
10.9 American options and the CRR American tree 180
10.10 User-defined functions in Module0 and Module1 182
Summary 183
References 184

11 **The Black–Scholes formula** 185
11.1 The Black–Scholes formula 185
11.2 Black–Scholes formula in the spreadsheet 186
11.3 Options on currencies and commodities 187
11.4 Calculating the option’s ‘greek’ parameters 189
11.5 Hedge portfolios 190
11.6 Formal derivation of the Black–Scholes formula 192

Summary

- Part Three Options on Equities 155
- **Introduction to options on equities** 157
- **Binomial trees** 167
- **The Black–Scholes formula** 185
11.7 User-defined functions in Module1
Summary
References

12 Other numerical methods for European options
12.1 Introduction to Monte Carlo simulation
12.2 Simulation with antithetic variables
12.3 Simulation with quasi-random sampling
12.4 Comparing simulation methods
12.5 Calculating greeks in Monte Carlo simulation
12.6 Numerical integration
12.7 User-defined functions in Module1
Summary
References

13 Non-normal distributions and implied volatility
13.1 Black–Scholes using alternative distributional assumptions
13.2 Implied volatility
13.3 Adapting for skewness and kurtosis
13.4 The volatility smile
13.5 User-defined functions in Module1
Summary
References

Part Four Options on Bonds

14 Introduction to valuing options on bonds
14.1 The term structure of interest rates
14.2 Cash flows for coupon bonds and yield to maturity
14.3 Binomial trees
14.4 Black’s bond option valuation formula
14.5 Duration and convexity
14.6 Notation
Summary
References

15 Interest rate models
15.1 Vasicek’s term structure model
15.2 Valuing European options on zero-coupon bonds, Vasicek’s model
15.3 Valuing European options on coupon bonds, Vasicek’s model
15.4 CIR term structure model
15.5 Valuing European options on zero-coupon bonds, CIR model
15.6 Valuing European options on coupon bonds, CIR model
15.7 User-defined functions in Module1
Summary
References
16 Matching the term structure 243
 16.1 Trees with lognormally distributed interest rates 243
 16.2 Trees with normal interest rates 246
 16.3 The Black, Derman and Toy tree 247
 16.4 Valuing bond options using BDT trees 248
 16.5 User-defined functions in Module1 250
 Summary 252
 References 252

Appendix Other VBA functions 253
 Forecasting 253
 ARIMA modelling 254
 Splines 256
 Eigenvalues and eigenvectors 257
 References 258

Index 259