Modern Analytical Methodologies in Fat- and Water-Soluble Vitamins
CONTENTS

CONTRIBUTORS xv

PREFACE xvii

CUMULATIVE LISTING OF VOLUMES IN SERIES xix

PART 1 FAT-SOLUBLE VITAMINS

CHAPTER 1 VITAMIN A 3

Thomas Arnhold, Heinz Nau, and Ralph Ruehl

1.1. Introduction 3
1.2. Sample Collection, Handling, and Storage 7
1.3. Sample Preparation 8
 1.3.1. General Principles 8
 1.3.2. Precipitation, Dilution, and Solvent Extraction 9
 1.3.3. Saponification 11
 1.3.4. Enzymatic Reactions 12
 1.3.5. Solid-Phase Extraction 13
 1.3.6. Sample Preparation Coupled On-Line to HPLC 13
1.4. Reference Standards 15
1.5. High-Performance Liquid Chromatography 16
 1.5.1. General Considerations 16
 1.5.2. Determination of Total Vitamin A 19
 1.5.3. Separation of Geometric Isomers 20
 1.5.4. Separation of Retinoid Classes According to Their Polarity 26
 1.5.5. Vitamin A, Vitamin E, and Carotenoids 31
1.6. Other Liquid Chromatographic Methods 34
 1.6.1. Microbore-LC 34
 1.6.2. HPLC of Retinol Bound to RBP 35
CHAPTER 2 VITAMIN D

Michael F. Holick

2.1. Origins of Vitamin D$_2$ and Vitamin D$_3$ 51
2.2. Metabolism and Biologic Functions of Vitamin D 54
2.3. Measurement of Vitamin D Bioactivity 55
2.4. Modern Methods for Determining the Vitamin D Content in Blood 55
2.5. Strategies for Determining Circulating Concentrations of 25-Hydroxyvitamin D 56
2.6. Strategies for Determining Circulating Concentrations of 1,25-Dihydroxyvitamin D 66
2.7. Measurement of 24,25-Dihydroxyvitamin D and 25,26-Dihydroxyvitamin D 73
2.8. Clinical Utility for Assays for Vitamin D and Its Metabolites 74
 2.8.1. Vitamin D 74
 2.8.2. 25-Hydroxyvitamin D 74
 2.8.3. 1,25-Dihydroxyvitamin D 75
 2.8.4. Other Metabolites 76
2.9. Conclusion 76
References 77

CHAPTER 3 DETERMINATION OF TOCOPHEROLS AND TOCOTRIENOLS IN FOODS AND TISSUES

Vieno I. Piironen

3.1. Introduction 81
3.2. Vitamin E Compounds in Foods and Tissues 82
 3.2.1. Structure and Nomenclature 82
 3.2.2. Significance of Different Tocopherols and Tocotrienols in Foods and Tissues 84
3.3. High-Performance Liquid Chromatography 85
 3.3.1. Sample Preparation 85
CHAPTER 4 VITAMIN K

Sarah L. Booth, Kenneth W. Davidson, James A. Sadowski, and Gregory G. Dolnikowski

4.1. Introduction 129

4.2. Determination of Phylloquinone by HPLC 133
 4.2.1. Analytical Conditions 133
 4.2.2. Extraction Methods for Biological Tissues 136
 4.2.3. Extraction Methods for Foods and Beverages 139
 4.2.4. Internal Standards 141
 4.2.5. Analytical Variation 142
 4.2.6. Factors Affecting Phylloquinone Concentrations 144

4.3. Determination of Phylloquinone Metabolites and Hydrogenation Products 146
 4.3.1. Gas Chromatography–Mass Spectrometry 146
 4.3.2. Simultaneous Determination of Phylloquinone and 2’-3’-Dihydrophyloquinone 149
 4.3.3. Simultaneous Determination of Phylloquinone and Phylloquinone 2,3-Epoxide 151

4.4. Determination of Menaquinones by HPLC 153

4.5. Other Indicators of Vitamin K Nutritional Status 155
CHAPTER 5 SIMULTANEOUS DETERMINATION OF FAT-SOLUBLE VITAMINS IN FOOD, FEED, AND SERUM 171
Ronald R. Eitenmiller and W. O. Landen, Jr.

5.1. Introduction 171

5.2. Simultaneous Analysis of Fat-Soluble Vitamins in Food and Feed 172
5.2.1. Margarine and Oils 172
5.2.2. Milk, Infant Formula, and Cheese 184
5.2.3. Cereals 191
5.2.4. Miscellaneous Foods 191

5.3. An Integrated Approach to Fat-Soluble Vitamin Analysis of Foods 193

5.4. Simultaneous Analysis of Fat-Soluble Vitamins in Serum or Plasma 195
5.4.1. Retinol and α-Tocopherol 205
5.4.2. Vitamin K₁ and α-Tocopherol 206
5.4.3. Simultaneous Analysis of Multiple Fat-Soluble Vitamins in Serum or Plasma 207

5.5. Concluding Comments 215

References 215

PART 2 WATER-SOLUBLE VITAMINS

CHAPTER 6 THIAMIN 225
Ronald R. Eitenmiller and W. O. Landen, Jr.

6.1. Introduction 225
6.2. Properties 226
CHAPTER 9 VITAMIN B\textsubscript{12}
Edward V. Quadros

9.1. Introduction
9.1.1. Principle
9.2. Cobalamin Binding Proteins
9.3. Materials
9.3.1. Reagents
9.3.2. Preparation of Reagents
9.4. Preparation of Binding Proteins
9.4.1. HC as the Binding Protein
9.4.2. TC as the Binding Protein
9.4.3. IF as the Binding Protein
9.4.4. Antibody to Cbl as the Binding Protein
9.5. Standardization of Binding Proteins
9.6. Extraction of Cbl from Serum or Plasma
9.7. Extraction of Cbl from Cells or Tissues
9.9. General Comments on Assay Protocol
9.10. Interpretation of Results
References

CHAPTER 10 Niacin
Shunitz Tanaka

10.1. Introduction
10.2. General Methods
10.2.1. Sample Preparation
10.2.2. Chemical Methods
10.2.3. Microbiological Methods
10.3. High-Performance Liquid Chromatography
10.4. Capillary Electrophoresis
10.5. Improvement of Chemical and Biological Methods
 10.5.1. Chemical Assay
 10.5.2. Microbiological Assay
10.6. Electrochemical Detection
 10.6.1. Niacin
 10.6.2. NADH and NADPH

References

CHAPTER 11 PANTOTHENATE
Won O. Song, Carl T. Wittwer, and Bonita W. Wyse
11.1. Biological Importance
11.2. Derivatives and Salts of Pantothenic Acid
11.3. Analytical Methods for Pantothenic Acid
 11.3.1. Bioassays
 11.3.2. Immunoassays
 11.3.3. Chemical and Other Assays
11.4. Analytical Methods for Measuring CoA and Intermediates
 11.4.1. Measurement of CoA
 11.4.2. Measurement of CoA Intermediates

References

CHAPTER 12 BIOTIN
Janos Zempleni and Donald M. Mock
12.1. Introduction
12.2. Microbiological Assays
12.3. Avidin-Binding Assays
12.4. Microbial Versus Avidin-Binding Assays
12.5. Chromatographic Procedures
 12.5.1. High-Performance Liquid Chromatography
 12.5.2. Ion-Exchange Chromatography
 12.5.3. Thin-Layer Chromatography and Paper Chromatography
12.6. Radioisotopes of Biotin
12.7. Analysis of Biotin-Dependent Carboxylases 397
 12.7.1. Acetyl-CoA Carboxylase 399
 12.7.2. Pyruvate Carboxylase, Propionyl-CoA Carboxylase, and β-Methylcrotonoyl-CoA Carboxylase 399
12.8. Biotin Metabolites in Biological Fluids 399
12.9. Biotin Metabolites in Food 400
References 402

CHAPTER 13 VITAMIN C 411
 Steven C. Rumsey and Mark Levine

13.1. Introduction 411
13.2. Stability, Sensitivity, and Substance Interference 415
13.3. Colorimetric / Spectrometric Assays 417
 13.3.1. Assays Based on Ascorbic Acid as a Reducing Agent 417
 13.3.2. Dinitrophenylhydrazine Derivatization by Dehydroascorbic Acid and 2,3-Diketogulonic Acid 418
 13.3.3. Spectrophotometric Assay of Dehydroascorbic Acid 418
13.4. Fluorometric Assays 419
13.5. Gas–Liquid Chromatography 420
13.6. Enzymatic Assays 421
13.7. Capillary Zone Electrophoresis 422
13.8. High-Performance Liquid Chromatography 422
 13.8.1. HPLC with Ultraviolet Detection 423
 13.8.2. HPLC with Fluorescence Detection 424
 13.8.3. HPLC with Electrochemical Detection 425
 13.8.4. HPLC with Amperometric Detection 425
 13.8.5. HPLC with Coulometric Detection 427
 13.8.6. HPLC Analysis of Dehydroascorbic Acid 428
13.9. Assays of Semidehydroascorbic Acid 430
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.10. Flow Injection Assay</td>
<td>430</td>
</tr>
<tr>
<td>13.11. In Vivo Assays</td>
<td>431</td>
</tr>
<tr>
<td>13.12. Assay Comparisons</td>
<td>432</td>
</tr>
<tr>
<td>13.13. Summary and Conclusions</td>
<td>433</td>
</tr>
<tr>
<td>References</td>
<td>434</td>
</tr>
</tbody>
</table>

| INDEX | 447 |
CONTRIBUTORS

Thomas Arnhold, Department of Food Toxicology, School of Veterinary Medicine, Germany. Present address: Department of Pharmacokinetics and Metabolism, Boehringer Ingelheim Pharma KG, Biberach an der Riss, Germany

Sarah L. Booth, Vitamin K Laboratory, Jean Mayer USDA Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts

Stephen P. Coburn, Department of Biochemistry, Fort Wayne State Developmental Center, Fort Wayne, Indiana

Kenneth W. Davidson, Vitamin K Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts

Gregory G. Dolnikowski, Mass Spectrometry Laboratory, Jean Mayer USDA Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts

Ronald R. Eitenmiller, College of Agricultural and Environmental Sciences, Department of Food Science and Technology, University of Georgia, Athens, Georgia

Michael F. Holick, Vitamin D, Skin, and Bone Research Laboratory, Section of Endocrinology, Nutrition, and Diabetes, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts

William O. Landen, Jr., College of Agricultural and Environmental Sciences, Department of Food Science and Technology, University of Georgia, Athens, Georgia

Mark Levine, Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland

Donald M. Mock, Division of Gastroenterology, Hepatology, and Nutrition, University of Arkansas for Medical Sciences, Department of Pediatrics, Little Rock, Arkansas

Heinz Nau, Department of Food Toxicology, School of Veterinary Medicine, Hannover, Germany
Vieno I. Piironen, Department of Applied Chemistry and Microbiology, University of Helsinki (Viikki, B. Food Chemistry), Finland

Edward V. Quadros, Department of Hematology/Oncology, SUNY Health Science Center, Brooklyn, New York

Ralph Ruehl, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany

Steven C. Rumsey, Mead Johnson Nutritionals, Evansville, Indiana

James A. Sadowski, Vitamin K Laboratory, Jean Mayer USDA Human Research Center on Aging, Tufts University, Boston, Massachusetts

Won O. Song, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan

Shunitz Tanaka, Division of Material Science, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan

Carl T. Wittwer, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah

Bonita W. Wyse, College of Family Life, Utah State University, Logan, Utah

Janos Zempleni, Department of Pediatrics, Arkansas Children’s Hospital, Little Rock, Arkansas
PREFACE

The role of vitamins in human health is constantly being redefined and expanded. As a result, accurate and precise values for the various forms of each vitamin in small biological samples as well as in foods and beverages are in great demand. This volume constitutes an update of the state of the art of vitamin analysis and highlights new, sensitive analytical procedures for biological samples. Reversed-phase, high-performance liquid chromatography (RP-HPLC), coupled with appropriate detection procedures, constitutes the “workhorse” measurement system for vitamins. This status has been promoted by recent advances in reversed-phase column technology and by advances in HPLC detectors. Where appropriate, the applications of other separation systems, e.g., gas chromatography and capillary zone electrophoresis, are also described.

Sample extraction and preparation are time-consuming activities during the analysis of foods and biological samples for vitamins. The applications of new instrumentation, which greatly reduces sample preparation time, are discussed by several authors.

This volume is designed primarily for those who have a familiarity with the different sample preparation and chromatographic techniques. However, each author has provided useful information for a beginner in this field.

This work could not have been presented without the hard work and cooperation of the various authors. We are grateful for their efforts and patience.

Won O. Song
Gary R. Beecher
Ronald R. Eitenmiller
CHEMICAL ANALYSIS

A SERIES OF MONOGRAPHS ON
ANALYTICAL CHEMISTRY AND ITS APPLICATIONS

J. D. Winefordner, Series Editor

Vol. 2. Chromatographic Adsorption Analysis. By Harold H. Strain (out of print)
 Part I: General Aspects. By E. B. Sandell and Hiroshi Onishi
 Part IIA: Individual Metals, Aluminum to Lithium. By Hiroshi Onishi
 Part IIB: Individual Metals, Magnesium to Zirconium. By Hiroshi Onishi
Vol. 4. Organic Reagents Used in Gravimetric and Volumetric Analysis. By John F. Flagg (out of print)
Vol. 6. Analysis of Insecticides and Acaricides. By Francis A. Gunther and Roger C. Blinn (out of print)
Vol. 7. Chemical Analysis of Industrial Solvents. By the late Morris B. Jacobs and Leopold Schetlan
Vol. 10. The Chemical Analysis of Air Pollutants. By the late Morris B. Jacobs

xix
Vol. 22. The Analytical Toxicology of Industrial Inorganic Poisons. By the late Morris B. Jacobs
Vol. 24. Kinetics in Analytical Chemistry. By Harry B. Mark, Jr. and Garry A. Rechnitz
Vol. 29. The Analytical Chemistry of Sulfur and Its Compounds (in three parts). By J. H. Karchmer
Vol. 31. Photometric Organic Analysis (in two parts). By Eugene Sawicki
Vol. 32. Determination of Organic Compounds: Methods and Procedures. By Frederick T. Weiss
Vol. 34. Neutron Activation Analysis. By D. De Soete, R. Gijbels, and J. Hoste
Vol. 35. Laser Raman Spectroscopy. By Marvin C. Tobin
Vol. 36. Emission Spectrochemical Analysis. By Morris Slavin
Vol. 37. Analytical Chemistry of Phosphorus Compounds. Edited by M. Halmann
Vol. 41. Analysis of Silicontes. Edited by A. Lee Smith
Vol. 43. Chemical Infrared Fourier Transform Spectroscopy. By Peter R. Griffiths
Vol. 44. Microscale Manipulations in Chemistry. By T. S. Ma and V. Horak
Vol. 45. Thermometric Titrations. By J. Barthel
Vol. 46. Trace Analysis: Spectroscopic Methods for Elements. Edited by J. D. Winefordner
Vol. 47. Contamination Control in Trace Element Analysis. By Morris Zief and James W. Mitchell
Vol. 50. Analytical Laser Spectroscopy. Edited by Nicolo Omenetto
Vol. 52. Chemical Analysis by Microwave Rotational Spectroscopy. By Ravi Varma and Lawrence W. Hrubesh
Vol. 53. Information Theory as Applied to Chemical Analysis. By Karl Eckschlager and Vladimir Stepanek
Vol. 55. Archaeological Chemistry. By Zvi Goffer
Vol. 56. Immobilized Enzymes in Analytical and Clinical Chemistry. By P. W. Carr and L. D. Bowers
Vol. 57. Photoacoustics and Photoacoustic Spectroscopy. By Allan Rosenerwaig
Vol. 58. Analysis of Pesticide Residues. Edited by H. Anson Moye
Vol. 61. Direct Characterization of Fineparticles. By Brian H. Kaye
Vol. 63. Applied Electron Spectroscopy for Chemical Analysis. Edited by Hassan Windawi and Floyd Ho
Vol. 64. Analytical Aspects of Environmental Chemistry. Edited by David F. S. Natusch and Philip K. Hopke
Vol. 65. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis. By D. Luc Massart and Leonard Kaufman
Vol. 67. An Introduction to Photoelectron Spectroscopy. By Pradip K. Ghosh
Vol. 68. Room Temperature Phosphorimetry for Chemical Analysis. By Tuan Vo-Dinh
Vol. 69. Potentiometry and Potentiometric Titrations. By E. P. Serjeant
Vol. 70. Design and Application of Process Analyzer Systems. By Paul E. Mix
Vol. 71. Analysis of Organic and Biological Surfaces. Edited by Patrick Echlin
Vol. 72. Small Bore Liquid Chromatography Columns: Their Properties and Uses. Edited by Raymond P. W. Scott
Vol. 73. Modern Methods of Particle Size Analysis. Edited by Howard G. Barth
Vol. 75. Spot Test Analysis: Clinical, Environmental, Forensic and Geochemical Applications. By Ervin Jungreis
Vol. 76. Receptor Modeling in Environmental Chemistry. By Philip K. Hopke
Vol. 77. Molecular Luminescence Spectroscopy: Methods and Applications (in three parts). Edited by Stephen G. Schulman
Vol. 78. Inorganic Chromatographic Analysis. Edited by John C. MacDonald
Vol. 80. Selected Methods of Trace Metal Analysis: Biological and Environmental Samples. By Jon C. VanLoon
Vol. 81. The Analysis of Extraterrestrial Materials. By Isidore Adler
Vol. 82. Chemometrics. By Muhammad A. Sharaf, Deborah L. Illman, and Bruce R. Kowalski
Vol. 83. Fourier Transform Infrared Spectrometry. By Peter R. Griffiths and James A. de Haseth
Vol. 84. Trace Analysis: Spectroscopic Methods for Molecules. Edited by Gary Christian and James B. Callis
Vol. 85. Ultratrace Analysis of Pharmaceuticals and Other Compounds of Interest. Edited by S. Ahuja
Vol. 87. Analytical Applications of Lasers. Edited by Edward H. Piepmeier
Vol. 89. Detectors for Liquid Chromatography. Edited by Edward S. Yeung
Vol. 91. Applications of New Mass Spectrometry Techniques in Pesticide Chemistry. Edited by Joseph Rosen
Vol. 94. Laser Remote Chemical Analysis. Edited by Raymond M. Measures
Vol. 96. Kinetic Aspects of Analytical Chemistry. By Horacio A. Mottola
Vol. 97. Two-Dimensional NMR Spectroscopy. By Jan Schraml and Jon M. Bellama
Vol. 100. Analytical Aspects of Drug Testing. Edited by Dale G. Deustch
Vol. 101. Chemical Analysis of Polycyclic Aromatic Compounds. Edited by Tuan Vo-Dinh
Vol. 103. Determination of Molecular Weight. Edited by Anthony R. Cooper
Vol. 104. Selectivity and Detectability Optimization in HPLC. By Satinder Ahuja
Vol. 105. Laser Microanalysis. By Lieselotte Moenke-Blankenburg
Vol. 106. Clinical Chemistry. Edited by E. Howard Taylor
<table>
<thead>
<tr>
<th>Volume</th>
<th>Title</th>
<th>Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>Multielement Detection Systems for Spectrochemical Analysis</td>
<td>Kenneth W. Busch and Marianna A. Busch</td>
</tr>
<tr>
<td>108</td>
<td>Planar Chromatography in the Life Sciences</td>
<td>Joseph C. Touchstone</td>
</tr>
<tr>
<td>109</td>
<td>Fluorometric Analysis in Biomedical Chemistry: Trends and Techniques Including HPLC Applications</td>
<td>Norio Ichinose, George Schwedt, Frank Michael Schneipel, and Kyoko Adochi</td>
</tr>
<tr>
<td>110</td>
<td>An Introduction to Laboratory Automation</td>
<td>Victor Cerda and Guillermo Ramis</td>
</tr>
<tr>
<td>111</td>
<td>Gas Chromatography: Biochemical, Biomedical, and Clinical Applications</td>
<td>Ray E. Clement</td>
</tr>
<tr>
<td>112</td>
<td>The Analytical Chemistry of Silicones</td>
<td>A. Lee Smith</td>
</tr>
<tr>
<td>113</td>
<td>Modern Methods of Polymer Characterization</td>
<td>Howard G. Barth and Jimmy W. Mays</td>
</tr>
<tr>
<td>114</td>
<td>Analytical Raman Spectroscopy</td>
<td>Jeanette Graselli and Bernard J. Bulkin</td>
</tr>
<tr>
<td>115</td>
<td>Trace and Ultratrace Analysis by HPLC</td>
<td>Satinder Ahuja</td>
</tr>
<tr>
<td>116</td>
<td>Radiochemistry and Nuclear Methods of Analysis</td>
<td>William D. Ehmann and Diane E. Vance</td>
</tr>
<tr>
<td>117</td>
<td>Applications of Fluorescence in Immunoassays</td>
<td>Ilkka Hemmila</td>
</tr>
<tr>
<td>118</td>
<td>Principles and Practice of Spectroscopic Calibration</td>
<td>Howard Mark</td>
</tr>
<tr>
<td>119</td>
<td>Activation Spectrometry in Chemical Analysis</td>
<td>S. J. Parry</td>
</tr>
<tr>
<td>120</td>
<td>Remote Sensing by Fourier Transform Spectrometry</td>
<td>Reinhard Beer</td>
</tr>
<tr>
<td>121</td>
<td>Detectors for Capillary Chromatography</td>
<td>Herbert H. Hill and Dennis McMinn</td>
</tr>
<tr>
<td>122</td>
<td>Photochemical Vapor Deposition</td>
<td>J. G. Eden</td>
</tr>
<tr>
<td>123</td>
<td>Statistical Methods in Analytical Chemistry</td>
<td>Peter C. Meier and Richard Zund</td>
</tr>
<tr>
<td>124</td>
<td>Laser Ionization Mass Analysis</td>
<td>Akos Vertes, Renaat Gijbels, and Fred Adams</td>
</tr>
<tr>
<td>125</td>
<td>Physics and Chemistry of Solid State Sensor Devices</td>
<td>Andreas Mandelis and Constantinos Christofides</td>
</tr>
<tr>
<td>126</td>
<td>Electroanalytical Stripping Methods</td>
<td>Khjena Z. Brainina and E. Neyman</td>
</tr>
<tr>
<td>127</td>
<td>Air Monitoring by Spectroscopic Techniques</td>
<td>Markus W. Sigrist</td>
</tr>
<tr>
<td>128</td>
<td>Information Theory in Analytical Chemistry</td>
<td>Karel Eckschlager and Klaus Danzer</td>
</tr>
<tr>
<td>129</td>
<td>Flame Chemiluminescence Analysis by Molecular Emission Cavity Detection</td>
<td>David Stiles, Anthony Calokerinos, and Alan Townshend</td>
</tr>
<tr>
<td>130</td>
<td>Hydride Generation Atomic Absorption Spectrometry</td>
<td>Jiri Dedina and Dimitar L. Tsalev</td>
</tr>
<tr>
<td>131</td>
<td>Selective Detectors: Environmental, Industrial, and Biomedical Applications</td>
<td>Robert E. Sievers</td>
</tr>
<tr>
<td>132</td>
<td>High-Speed Countercurrent Chromatography</td>
<td>Yoichiro Ito and Walter D. Conway</td>
</tr>
<tr>
<td>133</td>
<td>Particle-Induced X-Ray Emission Spectrometry</td>
<td>Sven A. E. Johansson, John L. Campbell, and Klas G. Malmqvist</td>
</tr>
</tbody>
</table>
Vol. 135. Element Speciation in Bioinorganic Chemistry. Edited by Sergio Caroli
Vol. 137. Fluorescence Imaging Spectroscopy and Microscopy. Edited by Xue Feng Wang and Brian Herman
Vol. 139. Modern Techniques in Electroanalysis. Edited by Petr Vanýsek
Vol. 142. The Impact of Stereochemistry on Drug Development and Use. Edited by Hassan Y. Aboul-Enein and Irving W. Wainer
Vol. 143. Macrocyclic Compounds in Analytical Chemistry. Edited by Yury A. Zolotov
Vol. 144. Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization. By Michael Thompson and David Stone
Vol. 148. Commercial Biosensors: Applications to Clinical, Bioprocess and Environmental Samples. Edited by Graham Ramsay
Vol. 150. Principles of Chemical and Biological Sensors. Edited by Dermot Diamond
Modern Analytical Methodologies in Fat- and Water-Soluble Vitamins