Index

2-D see two dimensional
3-D see three dimensional
AA’BB’ systems 54–5, 200
ab initio prediction 171
AB systems 67–9, 75, 96, 200–2
absolute quantification 158
absorption signals 36–8
isotopic abundances 13, 127
ABX systems 69–72, 75, 96, 107, 200–2
accidental equivalence 76–8
acidification 103
acquisition software 167
adiabatic pulses 26
alcohols 46, 84–5, 102–3, 104–5
aldehydes 47
aliasing 25
alkenes 57, 60–3, 141
alkyl systems 63–5, 142
alkynes 57, 63–4, 141
amides 46–8, 79–81
amines
chemical elucidation 104
interpretation of spectra 97–100
15N NMR spectroscopy 153–5
ammonium salts 89–90
anisotropic interactions 67–8, 74–5, 79, 93
anisotropic solvents 104
apodization 34–6
aromatic systems
13C NMR spectroscopy 138, 140
interpretation of spectra 48–57, 59–60, 85–6
auto-correlation 134
axial–axial coupling 92, 95
10B–H couplings 90–1
backward linear prediction 33
baseline correction 38–9
baseline distortions 161
basification 103
bicyclic heterocycles 57, 60
bio-fluid NMR 143, 145
borohydrides 90–1
13C NMR spectroscopy 125, 127–42
chemical shifts 138–42
distortionless enhancement by polarization transfer
129–30, 131–2, 137, 177, 182, 189, 193
general principles and 1-D 13C 127–30
problems and solutions 175–9, 180–3, 185–7, 189–90,
192–5, 197–204
proton decoupling 128, 130
resolution 136
sensitivity 127–8, 133
software tools 169–70
spectrum referencing 128–9
two dimensional proton–carbon correlated
spectroscopy 130–7
13C–H couplings 82–4
carbon tetrachloride 16
carbonyls 139
carboxylic acids 46–8, 85
Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence
147–8
chemical elucidation 101–9
acidification/basification 103
chiral resolving agents 106–9
deuteriation 101–3
lanthanide shift reagents 106
solvents 104, 109
trifluoroacetylation 101, 104–5
chemical shifts
13C NMR spectroscopy 138–42
confidence curves 43–4
interpretation of spectra 42
origin 6–7
terminology and conventions 6–7
chiral binaphthol 107–8
chiral centers
chemical elucidation 106–9
interpretation of spectra 67–74, 93–6, 99–100, 200–2

Essential Practical NMR for Organic Chemistry S. A. Richards and J. C. Hollerton
© 2011 John Wiley & Sons, Ltd
Indeks

chiral resolving agents 106–9
confidence curves 43–4, 57
contamination of samples 20, 89–90
continuous wave (CW) systems 2–3, 4
contour plots 114–15
correlated spectroscopy (COSY) 112–16
 nuclear Overhauser effect 118, 122
problems and solutions 176, 181, 185, 192, 198, 201–2
processing 33
spectrum acquisition 28
three dimensional NMR techniques 149
 see also two dimensional proton–carbon correlated spectroscopy
coupling constants 9
coupling patterns 42
CPMG see Carr–Purcell–Meiboom–Gill
cryogens 165–6
cryoshims 28
CW see continuous wave
dechief simplicity 77–8
density functional theory (DFT) 171
DEPT see distortionless enhancement by polarization transfer
deshielding substituion 52–3, 55
deuteration 47, 101–3
deutero benzene 16, 104
deutero chloroform 14, 17
deutero dimethyl sulfoxide 14–15, 17
deutero methanol 15, 17, 81
deutero pyridine 104
deutero water 16, 18
DFT see density functional theory
1,4-di-substituted benzene systems 54–5
1,3-di-substituted benzene systems 55
diastereoisomers 70–4
diastereotopic protons 72–4
diffusion ordered spectroscopy (DOSY) 148–9
dihedral angles 64–5, 69, 92–6
dimethyl sulfoxide (DMSO) 103
dispersion signals 36–8
distortionless enhancement by polarization transfer
 (DEPT) 129–30, 131–2, 137, 177, 182, 189, 193
DOSY see diffusion ordered spectroscopy
double bonded systems 57–64
development effects 18–19
electronic reference to access in vivo concentrations (ERETIC) 159
enantiomers 70–4
enantiotopic protons 72–4
enol ethers 57, 63–4
ERETIC 159
exchangeable protons 44, 46–8, 101–3
exponential multiplication 34
external locks 31
external standards 158–9

19F NMR spectroscopy 124–5, 151–2, 153
19F–H couplings 84–7
falloff 35–7
FID see free induction decay
field homogeneity 11, 18–20
filtration 19–21
fine structure 11–12
first order spectra 9
flip angle 25–6
flow NMR 144–5
flowchart for NMR interpretation 174
folding 25
four-bond coupling 133–4
Fourier transform (FT) processes 2, 3–10, 36, 113–14
free bases 96–100, 173, 196–7
free induction decay (FID) 3–4
 instrumental elucidation 113, 117
 processing 33, 34, 38
frequency domain 4, 36
frequency lock 30–1
FT see Fourier transform
furans 57
Gaussian multiplication 34–5
geminal coupling 67–9, 75, 100
gradient enhanced Overhauser effect spectroscopy (GOESY) 116, 124
gyromagnetic ratio 1, 13
health risks 163–6
cryogens 165–6
magnetic fields 163–5
sample-related injuries 166
heterocycles
 13C NMR spectroscopy 132–3, 138
 instrumental elucidation 120–1
 interpretation of spectra 49, 56–60, 85–7, 91–6
 Karplus curves 91–6
 15N NMR spectroscopy 154–5
 problems and solutions 173, 196
heteronuclear coupling 82–100
10B–H couplings 90–1
Index 213

13C-H couplings 82–4
19F-H couplings 84–7
heterocyclic protons 85–7, 91–6
Karplus curves 91–6
14N-H couplings 89–90
31P-H couplings 87–9
salts, free bases and zwitterions 96–100
29Si-H couplings 91
117/119Sn-H couplings 91
heteronuclear multiple bond correlation (HMBC) 130,
133–8, 152–3, 155
heteronuclear coupling 84
problems and solutions 178, 183, 190, 194, 198, 200,
202–4
heteronuclear multiple quantum coherence (HMQC)
130–4, 137, 149, 202
heteronuclear single quantum coherence (HSQC) 130–4,
137, 149
problems and solutions 177, 182, 189, 193, 198, 200,
202–4
hierarchically ordered spherical description of
environment (HOSE) code 169–70, 171
high performance liquid chromatography (HPLC)
143–4
HMBC see heteronuclear multiple bond correlation
HMQC see heteronuclear multiple quantum coherence
homonuclear spin decoupling 111–12
HOSE code 169–70, 171
HPLC see high performance liquid chromatography
HSQC see heteronuclear single quantum coherence
imines 57, 63, 139
impurities 44–6, 84
incredible natural abundance double quantum transfer
experiment (INADEQUATE) 147
incremental parameters 171
indirect detection 130
indirect dimension 28
indoles 132–3
instrumental elucidation 111–25
correlated spectroscopy 112–16, 118
nuclear Overhauser effect 116–25
positional isomers 124–5
selective population transfer 119–20, 125
spin decoupling 111–12
total correlation spectroscopy 116
instrumentation 2
chemical shifts 6–7
continuous wave systems 2–3, 4
Fourier transform systems 2, 3–10
integration 9–10
splitting 7–9
superconducting NMR magnets 4–5
integration 9–10
chemical elucidation 108
interpretation of spectra 41–2
processing 39
quantification 161
internal locks 30
internal standards 158
interpretation of spectra 41–65
AA’BB’ systems 54–5
AB systems 67–9, 75, 96
ABX systems 69–72, 75, 96
accidental equivalence 76–8
alkyl protons 63–5
anisotropic interactions 67–8, 74–5, 79, 93
aromatic protons 48–57, 59–60, 85–6
chemical shifts 42
chiral centers 67–74, 93–6, 99–100, 200–2
confidence curves 43–4, 57
coupling patterns 42
deoceptive simplicity 77–8
double and triple bonded systems 57–64
eantiotopic and diastereotopic protons 72–4
exchangeable protons 44, 46–8
flexibility and complacency 42–3
flowchart 174
heterocyclic protons 49, 56–7, 59–60
heteronuclear coupling 82–100
impurities 44–6
integration 41–2
Karplus curves 91–6
magnetic non-equivalence 51, 54–6
non-first order spectra 50–4
polycyclic aromatic systems 49, 56–7, 59–60
problems and solutions 173–204
restricted rotation 78–82
salts, free bases and zwitterions 96–100
solvents 44–6, 81
spin coupling 49, 52
substituent effects 48–56
virtual coupling 76–7
see also chemical elucidation; instrumental
elucidation
inverse geometry 13
isonitriles 139
J-resolved 2-D NMR 147–8
Kapprus curves 91–6, 115, 134
keto-enol exchange 103
Index

lanthanide shift reagents 106
line broadening
13C NMR spectroscopy 128
exchangeable protons 46–8
filtration 20
high performance liquid chromatography 143–4
long-range coupling 11
quantities of sample 13
restricted rotation 78–9
solvents 14
substituent effects 50, 54
linear prediction 33
long-range coupling 11–12

magic angle spinning (MAS) 146–7
magnetic fields
homogeneity 11, 18–20
safety issues 163–5
magnetic non-equivalence 51, 54–6, 78
magnitude mode 37
mandelic acid 108
MAS see magic angle spinning
matching 30
metacyclophanes 75
mixed solvents 17
molecular anisotropy 74–5
monosubstituted benzene rings 50–4
morpholines 93–5, 114–15, 129, 131–2, 134–5
multisubstituted benzene rings 54–6

15N-H couplings 89–90
15N NMR spectroscopy 152–5
N-methylation 132–3
naphthalenes 117–20, 121–3, 137
nickel contamination 20
nitriles 139
nitro groups 153, 155
nitrovinyl groups 80–1
NOE see nuclear Overhauser effect
definition 9, 50–4, 76–8
nuclear Overhauser effect (NOE)
13C NMR spectroscopy 128, 133, 137
chemical elucidation 101, 103
instrumental elucidation 116–25
interpretation of spectra 47, 56, 96, 197, 198, 200–1, 204
number of increments 27–8
number of points 24
number of transients 12–13, 23–4

O-methylation 132–3
organotin compounds 91
oximes 63

31P NMR spectroscopy 152
31P-H couplings 87–9
partial double bond character 78–9
Pascal’s triangle 8–9, 69
peak picking 39
phase correction 36–8, 41–2
phase cycling 12–13
phenols 104–5
pivot points 37
polycyclic aromatic systems 49, 56–7, 59–60, 138
population differences 1
positional isomers 124–5, 173, 175, 196–7
power falloff 35–7
prediction software 128–9, 168–71
probe tuning 143–4
problems and solutions 173–204
processing 33–9
apodization 34–6
baseline correction 38–9
Fourier transformation 36
integration 39
linear prediction 33
peak picking 39
phase correction 36–8
software 167–8
spectrum referencing 39
zero filling 33
prochiral centers 74
proton decoupling 128, 130, 151–2
pseudo enantiomeric behavior 99–100
pulse width/pulse angle 25–7
pyridines 57, 61, 85–7, 120–1

Q-modulation sidebands 31
quantification 157–61
absolute 158
baseline distortions 161
electronic reference 159
external standards 158–9
integration 161
internal standards 158
QUANTAS technique 159–60
relative 157–8
relaxation delays 160–1
quantification through an artificial signal (QUANTAS) technique 159–60
radical scavengers 21
referencing see spectrum referencing
relative quantification 157–8
relaxation delays 27, 39, 160–1
residual solvent signals 15–16, 18
restricted rotation 78–82
ROESY see rotating frame Overhauser effect spectroscopy
roofing 52–3, 55, 67, 95
room temperature (RT) shims 28
rotameric forms 78–82
rotating frame Overhauser effect spectroscopy (ROESY) 116, 123–4, 149, 179, 186–7, 195, 198, 201, 204
RT see room temperature
safety issues 163–6
cryogens 165–6
magnetic fields 163–5
sample-related injuries 166
salts 96–100, 173, 196–7
sample depth 18–19
sample preparation 11–21
contamination 20
filtration 19–21
magnetic field homogeneity 11, 18–20
mixed solvents 17
number of transients 12–13
quantities of sample 12–13
residual solvent signals 15–16, 18
sample depth 18–19
solvents 13–18
spectrum referencing 17–18
sample-related injuries 166
selective population transfer (SPT) 119–20, 125
semi-empirical prediction 171
sensitivity of NMR technique 1–2, 3
13C NMR spectroscopy 127–8, 133
high performance liquid chromatography 143–4
quantities of sample 12–13
spinning of samples 31
see also signal-to-noise ratio
shielding substituents 52–3
shimming
high performance liquid chromatography 143–4
interpretation of spectra 83–4, 91
spectrum acquisition 18, 28–30
29Si–H couplings 91–2
signal-to-noise ratio (SNR) 1–2, 3, 10
13C NMR spectroscopy 127–8, 134, 136
instrumental elucidation 115
number of transients 12–13, 23–4
quantities of sample 12–13
sample depth 18
simulation software 171–2
sinc function 25–6
17/19F-H couplings 91
SNR see signal-to-noise ratio
software tools 167–72
acquisition software 167
13C NMR spectroscopy 169–70
1H NMR spectroscopy 170–1
prediction software 168–71
processing software 167–8
simulation software 171–2
structural elucidation software 172
structural verification software 172
solvent suppression 145
solvents
chemical elucidation 104, 109
interpretation of spectra 44–6, 81
mixed solvents 17
residual signals 15–16, 18
sample preparation 13–18
spectrum referencing 17–18
spectral interpretation see interpretation of spectra
spectral width 25
spectrum acquisition 23–31
acquisition time 25
frequency locks 30–1
number of increments 27–8
number of points 24
number of transients 23–4
pulse width/pulse angle 25–7
relaxation delay 27
shimming 28–30
spectral width 25
spinning 31
tuning and matching 30
spectrum referencing 17–18, 39, 128–9
spin choreography 4
spin decoupling 111–12
spin quantum numbers 1–2
spin–spin coupling 7–9, 49, 52
spinning of samples 31
spinning side bands 83–4
splitting 7–9, 51
SPT see selective population transfer
stabilized free radicals 20–1
stack plots 114
structural elucidation software 172
Index

216 structural verification software 172
substituent effects 48–56
superconducting NMR magnets 4–5
tautomerism 120–1
tetramethyl silane (TMS) 6, 17–18, 39, 91–2
TFAA see trifluoroacetic anhydride
TFAE see (−)2,2,2-trifluoro-1-(9-anthryl) ethanol
thiophenes 57
three dimensional (3-D) NMR 149
three-bond coupling 64–5, 92–6, 133–4, 136, 153
time-domain data 4
TMS see tetramethyl silane
total correlation spectroscopy (TOCSY) 116, 123, 149
1,2,4-tri-substituted benzene systems 55–6
trifluoroacetic acid 16
trifluoroacetic anhydride (TFAA) 101, 104–5
(−)2,2,2-trifluoro-1-(9-anthryl) ethanol (TFAE) 106–7
3-(trimethylsilyl) propionic-2,2,3,3-D₄ acid (TSP) 17–18
triple bonded systems 57–64
TSP see 3-(trimethylsilyl) propionic-2,2,3,3-D₄ acid
tuning 30
two dimensional (2-D) NMR 111, 112–16
diffusion ordered spectroscopy 148–9
INADEQUATE 147
J-resolved 147–8
problems and solutions 179, 186, 195
processing 33, 37
spectrum acquisition 25, 27–8, 31
two dimensional (2-D) NOESY 116, 122–3
two dimensional (2-D) proton–carbon correlated spectroscopy 130–7
vertical scaling 41–2
vicinal coupling 64–5, 92–6, 133–4, 136, 153
virtual coupling 76–7
WATERGATE pulse sequence 145
WET pulse sequence 145
Z test 72–4
zero filling 33
zwitterions 96–100