INDEX

A + B designs, dose-escalation trials, 133–134
Action menu, 12–13
Adaptive clinical trial design, see Adaptive trial design: Adaptive trial monitoring (ATM)
adaptive dose-escalation design, 26
biomarker-adaptive design, 26
characteristics of, 23–24
drop-loser design (DLD), 25
group sequential design, 24–25
response-adaptive randomization design (RARD), 25–26
sample-size reestimation design, 25
single-arm trial multistage design, 26
Adaptive design (AD), see Adaptive clinical trial design: Adaptive trial design characteristics of, 1–2
validation, 224–226
Adaptive Design Theory and Implementation Using SAS and R (Chang), 111
Adaptive trial design: basics of, 75–77
characteristics of, 3, 5–8, 12
using classifier biomarker, 93–95
drop-loser trial, 90–93
monitoring, see Adaptive trial monitoring (ATM)
oncology, see Oncology adaptive trial design
play-the-winner trial, 95–102
sample-size reestimation, 77–90
simulator, see Adaptive trial simulator two-stage, 112, 119
Adaptive trial monitoring (ATM): characteristics of, 1–2, 13
conditional power, 109–112
error-spending approach, 103–106, 115
futility index, 109–112
recalculating stopping boundaries, 105, 107–109
sample size reestimation, 113–114
trial examples, 114–121
validation, 226
Adaptive trial simulator:
adjusting critical region method, 149–151
classical design with multiple treatment groups, 165
classical design with two parallel treatment groups, 151–157
dose-escalation design, oncology trial, 168–171
dropping losers, 151, 155–156, 166–168
early stopping, 162–165
flexible design, with sample-size reestimation, 157–159
group sequential design, with one interim analysis, 161–162
multigroup trial, with response-adaptive randomization, 165–166
random-play-the-winner randomization, 160–161
sample-size reestimation, 157–159, 162–165
Adjusting critical region (ACR), 149–151
Adjustment, 149–151, 156, 159–160, 213
Adverse drug reaction (ADR), 130
Adverse effects, types of, 51, 129–130
Algorithm validation, 216
Alpha, 5, 82, 87, 91, 97, 102, 124, 158
Analysis of variance (ANOVA), 41–43, 173, 188–189, 197, 201, 209–210, 212, 218–220, 235, 238–239
ANOVA, see Analysis of variance (ANOVA)
Arctan transformation, 190–191, 204–205, 218, 235

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
Area under the curve (AUC), 22, 38, 132
Assumption, 27
Balanced design, 18
Bayesian approach:
characteristics of, 2, 63, 77, 151
continual reassessment method (CRM), 134–135, 147, 228
dose-escalation design, 168
Bernoulli:
confounding variable, 204, 220, 237
distribution, 172, 177, 229
Beta distribution, 172, 177, 229
Bias, operational, 24
Binomial distribution, 33, 172–173, 177, 185, 189, 195, 220, 229–230, 235
BIO Adaptive Design Working Group, 23
Bioavailability design, 21–22
Bioequivalence:
design, 14, 21–23
test, 36–38
trial, 16–17, 39
Biomarker-adaptive design, 2
Biomarker-negative population (BNP), 94
Biomarker-positive population (BPP), 94
Biomarkers, classified, 93–95
Bivariate t-distribution, 238
Bloch-Kraemer intraclass κ coefficient, 190, 219, 236
Block design, 210, 220, 239
Bonferroni adjustment, 213
Boundary/boundaries, see Lower bound;
Upper bound
adaptive trial design, 7
crossing probabilities, 224
parameter, 72
scales, 52
Carryover effects, 20–21
Case-control studies, 209, 219, 238
Cauchy distribution, 173, 177, 229
Censoring, 49
Center for Drug Evaluation and Research (CDER), 22
Chi-square, generally:
distribution, 173, 177, 185, 229–230
test, 31–32, 41–42, 189–190, 201, 219, 235, 239
Classical clinical trial design, see Classical trial design
confirmatory trials, 15
crossover design, 17–18
dose-response relationship, 17 endpoints, 15
exploratory trials, 16
factorial design, 18
multicenter trials, 16
nonequivalence trials, 16–17
noninferiority trials, 16–17
parallel design, 17
substantial evidence, 15
superiority trials, 16
Classical design, see Classical clinical trial design; Classical trial design
adaptive trial simulator, 151–157, 165
large-sample-size calculation, 43–44
multigroup trial design, 209–213
reference, 187–213
sample-size calculation methods, 235–239
single-group design, 187–196
two-group design, 196–209
validation of, 217–220
Classical trial design:
characteristics of, 1–5, 12
hypothesis test, 27–28
mathematical notes, 43–50
sample-size calculation, 28–43
under- or overpowered designs, 29–30
Clinical trial design:
adaptive, 23–26
classical, 14–18
requirements of, 14
selection of, 18–23
Clinical trials, see specific types of clinical trials
Phase I, 123, 129
Phase II, 25, 90, 123–124, 144–145, 151
Phase III, 25, 78–79, 81–84, 86, 90, 111, 149
Cluster randomization, 198, 220, 237
Cochran-Armitage test, 43, 201, 210–211, 219, 239
Comparative bioavailability study, 21
Complete crossover design, 19
Compute, 9–10, 12, 30–31, 35–43, 55, 57, 64–65, 124, 126, 136–137, 139, 185–186
Computer programs, validations, 231–234.
See also MS Word; Software; Spreadsheets
Conditional power:
adaptive trial monitoring, 119
calculation of, 112–113, 118
implications of, 1, 7, 63–64, 77–78, 81, 83, 86, 92, 109–111, 226
sequential trial design, 73–74
trial examples, 117
INDEX 253

Conditional probability, 29, 63, 72–73
Confidence interval (CI):
calculator, 3, 13, 182, 185–186
Confirmatory trial, 15
Continual reassessment method (CRM):
characteristics of, 2, 26
design simulation, 138–140
dose-escalation trial design, 133–135, 141–143
mathematical notes, 146–148
validation, 228, 232–234
Continuity correction, 209
Contrast test, 220
Copy, 4–5, 11
Correlation coefficient, 191–192, 196–197, 204–205, 236, 238
Crossover design:
characteristics of, 17–21, 29, 197–198, 220, 237–238
$\ p \times q \$, 19
$\ 2 \times 2 \$, 17, 71, 197–198, 218, 220, 237
CTriSoft, 12. See also Software, CTriSoft
Cumulative error rates, 106
Cut, 11

Data analyses, adaptive trial designs, 23–24.
See also Interim analysis
Data monitoring committee (DMC), 62
Decision making, influential factors, 94
Decision rules, 55, 145
Decision tree, 143–144
Degrees of freedom, 173, 188–189, 191–192, 201, 211
Density function, 48. See also Probability density function
Design menu, 11–12
Distribution calculator, 3, 230
Donner’s method, 198, 220, 237
Dose-escalation algorithm, 133–134
Dose-escalation design (DED), see Dose-escalation trial design
characteristics of, 1, 10–11
oncology trial, 168–171
validation of, 228
Dose-escalation rule, 132
Dose-escalation trial design, 3, 10–12, 21, 77. See also Dose-escalation trial monitoring (DTM)
Dose-escalation trial monitoring (DTM):
characteristics of, 1–2
using CRM, 141–143, 168
Dose-limiting toxicity (DLT), 129–133, 135–138, 140, 142–143, 228
Dose range, dose-escalation trial design, 131–132
Dose–response:
probability model, 146–147
relationship, significance of, 138
trials, 17–18, 25, 42–44
Dose-toxicity modeling, 130–131, 147–148
Double exponential distribution, 174
Drop-losing design (DLD):
characteristics of, 93, 151, 155–156, 166–168
defined, 25
mechanism, 90
seamless design, 90–93
Dropouts, 21, 48
Drug approval, substantial evidence, 15

Edit menu, 11
Effect-size ratio, 78
Efficacy:
boundary, 117
early stopping, 54–56
stopping, 162–163
stopping probabilities (ESP), 111–112, 120
Ending dose, 133
Endpoint(s):
adaptive trial design, 78, 97
clinical trial, 15, 24
classical trial design, 42–43
group sequential trial design, 66
implications of, 91
panel, 5
primary, 15, 86–90
secondary, 15
survival, 58–60, 65, 68, 120–121, 223–224
Enrollment rate, 48–50
Equivalence:
design, 22–23
tests, 38–39, 193, 205–208, 219–220, 236, 238
trial, 16–17, 23
Error inflation, 51–52, 119. See also Type I error(s); Type II error(s)
Error-spending approach, 103–106, 115, 224
Escalation design validation, 3 + 3, 228, 231–232
Escalation probability, 134
Escalation rules:
customization of, 140–141
types of, 1–2, 21
Estimators, bias-adjusted, 74
Example, defined, 12. See also specific types of designs and trials
ExpDesign Studio (ExpDesign):
characteristics of, 1–2
defined, 1
icons, 2–3
integrated environment, 2
Exploratory trials, 15–16
Exponential distribution, 48–49, 173, 177, 185, 229–230. See also Exponential survival distribution
Exponential survival distribution, 32–33, 46, 50, 68, 84, 202–204, 212, 218, 220, 237
External validity, 23
Factorial designs, 18
Family-wise error (FWE), 160, 165
* -distribution, 173, 177, 185, 198, 209–210, 229–230
Fibonacci number, 132
File menu, 11
Finite population, 188, 190, 193–195, 218, 235–236
Fisher’s arctan transformation, 190, 204–205, 218, 235, 238
Fisher’s exact test, 199–200, 220, 237
Fisher’s LSD method, 212
Flexible design, with sample-size reestimation, 157–159
Food, Drug and Cosmetics Act, Kefauver-Harris amendments, 15
Four-stage sequential design, 223
Futility:
binding, 225
characteristics of, 24–25, 53, 76, 80–81, 83–84, 86, 88, 92, 123–128, 158
early stopping, group sequential trial design, 56–58
index, 63–64, 66, 73, 109–112
rules, 150–151
stopping, 162–163
Gamma distribution, 151, 174, 177, 185, 229–230
Gaussian distribution, 177, 229
Genetic technologies, 93
Genomics, 93
Geometric distribution, 174, 177, 229
Gompertz distribution, 174
Goodness of fit, 201
Graphic calculator, 3, 13, 150, 182–184
Graphic user interface (GUI), 217
Group sequential design, see Group sequential trial design
adaptive trial simulator, 161–162
classical, 118
sequential design guidelines, 53–62
traditional, 105
validation, 221–224
Group sequential test, 51
Group sequential trial design:
basics of, 51–53
characteristics of, 4–6, 24–25
mathematical notes, 68–74
monitoring, 62–68
Hazard rate, 46–47, 50, 85, 208
Hazard ratio, 46–48, 65, 71, 120, 213
Help menus, 13
Hypergeometric distribution, 201
Hyperlogistic model, 168–170
Hypotheses panel, 5, 82
Hypothesis testing, 29, 41
ICH, trial design guidelines, 14
Individual bioequivalence, 22
Inferential statistics, 175
Information time, 7
Integrity, 24
Interim analysis (IA):
adaptive trial monitoring, 107–110, 120
characteristics of, 24–25, 51, 54, 64, 103, 128, 161–162
number and timing changes, 114–119
Internal validity, 24
In vivo studies, bioequivalence trials, 22
Kendall’s test for independence, 192, 235
Lan-DeMets power family, 226
Laplace distribution, 174, 177, 229
Latin square design, 210–211, 238
Lethal dose (LD), 131–132
Likelihood function, 147
Linear regression, 191–192, 196, 205, 219, 236, 238
Log-hazard ratio, 47, 65, 71
Logistic distribution, 174–175
Logistic model, 200
Logistic regression, 130, 191, 219, 236
Logit model, 130–131, 137, 209
Lognormal data, 37–38, 220
Lognormal distribution, 175, 177, 229
Log-rank test, 33, 45, 68, 71, 203–204, 219, 237
Lower bound, 150, 162–163, 166
McNemar’s test, 35, 189, 218, 235
Mann-Whitney U test, 196–197, 200, 218, 237
Mantel-Haenszel test, 39–40, 201, 219, 237
Matched-pairs parallel design, 19
Maximum efficacy dose, 21
Maximum likelihood estimate, 46
Maximum tolerable dose (MTD), 1, 21, 26, 129–143, 148, 168, 228
Maximum utility model, see MaxUtility
MaxUtility, 1, 124, 126, 128, 151, 170
Mean survival time, 46
Menus, types of, 11–13
Microarray analysis, 198, 213, 220, 239
MinExp, 1
MinExpSize, 124–127, 227
Minimal effective dose level (MELD), 132
Minimum effective dose, 220, 239
MinMax, 1, 227
MinMaxSize, 124–125, 227
MINP, 75–76, 103, 110–111, 114
MPP, 75–76, 82–84, 92, 103, 110–111, 114
MSP, 75–76, 78, 80–81, 103, 110–113, 225
MS Word, 184
Multibinomial generation, 181–182
Multicenter trials, 16
Multicollinearity, 20
Multigroup trial:
 adaptive trial simulator, 161–162
design, 209–213
Multiple regression, 20, 192, 219
Multisample hypothesis tests, 211–213
Multistage design (MSD), 1. See also Multistage trial design
Multistage trial design
 characteristics of, 3, 9–10, 12
 oncology adaptive trial design, 123–148
 single-arm, 26
 validation, 3, 9–10, 12
Multivariate generation, 179–181
MyExpDesign Studio.htm, 12
Noncentrality, 201, 210–212
Noninferiority design, 86–90. See also Noninferiority trial
Noninferiority tests, 35–36, 205–208, 220, 238
Noninferiority trial, 16–17, 23
Normal distribution, 104, 151, 158, 173, 175–177, 179, 181, 185, 229
Null hypothesis, 23–24, 27, 29, 54–56, 58, 60, 62, 118, 124, 126–128, 146, 166–167
Number of events, 48–50
O’Brien boundary, 7, 53, 80, 83, 85, 88, 92
O’Brien-Fleming boundary, 53, 104–105
Observed Info, 64
Observed Stage, 64
Odds ratio (OR), 39–41, 45–46, 195, 201, 209, 219, 236–237
Oncology adaptive trial design:
 dose-escalation, 129–141
dose-escalation trial monitoring, using CRM, 141–143
 mathematical notes, 143–148
 multistage, 123–128, 143–146
Oncology drugs, 21
Oncology trials, 33–34. See also Oncology adaptive trial design
Options menu, 4, 183
Outlier data, 22
Overpowered designs, 25, 29–30
Overshooting, dose-escalation trial design, 137
Parallel design, 17, 19, 22, 29, 205–206, 219–220, 238
Pareto distribution, 175–177, 229
Pascal distribution, 229
Paste, 5, 184
Pearson’s chi-square test, 31–32, 41, 199–201, 237
Pharmaceutical(s):
 alternatives, 21
 equivalents, 21
Pharmacokinetically guided dose escalation (PGDE), 132
Pharmacokinetics, 17, 22, 38
PhRMA Adaptive Design Group, 23
Placebo-controlled trials, 16, 18, 29
Pocock boundary, 7, 53, 64, 80, 83, 85, 88, 92, 105, 221
Point estimation, 74. See also Time-point interactions
Poisson distribution, 176–177, 185, 229–230
Pop-up messages, 8
Population bioequivalence, 22
Postulation, 27
Power:
characteristics of, 5, 28–30, 82, 91, 124, 164, 221–223
conditional, see Conditional power predictive, 63, 73–74
Power-family (PF) error-spending function, 104–105
Practice guide, xvii–xviii
Predicted MTD (PMTD), 134
Predictive biomarker, 94
Predictive power, 63, 73–74
Predictive probability, 147
Print, 4–5, 7–8, 11, 184–186
Probability:
calculator, 13
density function, 49, 72
distributions, 146–147, 229
function, 29, 171–177, 195–196
Prognostic biomarker, 93–94
Prophylactic drugs, 20
Proteomics, 93
p-scale, 224
p-value:
adaptive trial simulator, 158
implications of, 53, 56–60, 62, 66, 72, 74, 86, 88, 94
stagewise, see Stagewise p-values
trial examples, 119–120
Randomization:
adaptive trial simulator, 166
in crossover design, 19
dynamic, 2
random-play-the-winner, 150, 160–161
response-adaptive, 2, 24, 98, 165–166
Randomized play-the-winner (RPW) model, 26, 95–98, 165–167
Randomizer, 12, 228–229
Random multibinomial, 181–182
Random multivariate, 179–181
Random number generation, 177
Random univariate, 177–179
Rare events, 195–196, 219, 236
Rayleigh distribution, 176–177, 229
Recruitment, 19
Rectangular distribution, 176
Regression coefficient, 191, 218, 235
Relative risk, 45
Repeated confidence interval (RCI), 64, 73–74
Repeated-measure model, 77
Report, 3, 5, 8, 10–12, 55–56, 58, 60–62, 81
Residual effects, 20
Response-adaptive randomization design (RARD), 25–26, 77, 97, 99–102
Robustness, 157
Sample size:
adjustment of, 24, 78
calculation methods, 15, 18, 28–43, 111, 235–239
cumulative, 126–127
determination, 23
fixed, 24, 77
influential factors, 29
recalculation, 189
required, 2
validation, 221
SAS program, CRM validation, 232–234
Save, 4–5, 8–11
Seamless design, 25, 90–93
Self-study guide, xvii–xviii
Sequence effects, 22
Sequential design (SD), defined, 1. See also
Group sequential trial design;
Sequential trial design
Sequential trial design, 3, 12, 17, 68
Sign test, 187, 218, 235
Simulation:
adaptive trial design, 7–9, 80, 85–86, 95, 98–100, 102
beta version, 217, 228
dose-escalation trial design, 135–140
Single-arm trial multistage design, 26
Single-stage design:
classical, 126
group, 187–196
dose-escalation design simulation, 136–137
Software, CTriSoft:
corrections, 255
improvements to, 255
installation, 253
license agreement, 253–254
updates, 255
warranties, 254–255
Spreadsheet applications, 126
Stagewise p-values:
product of (MPP), 75–76, 82–84, 92, 103, 110–111, 114
sum of (MSP), 75–76, 78, 80–81, 103, 110–113, 225
weighted inverse normal (MINP), 75–76, 103, 110–111, 114
Starting (initial) dose, 131–132
Startup window, 3–4
Statement, 27
Statistical:
 calculator, 182, 185
 outcome validation, 216–217
Statisticians.org, 12
Status Bar, 11
Stochastic approximation (SA), 132
Stopping boundary:
 adaptive trial monitoring, 103–105, 108
calculation of, 107–108
implications of, 52–53, 56, 66, 58–60, 75, 77, 80–81, 224–225
trial examples, 115–117
validation, 226
Stopping probability, 56–57, 59–60
Stopping rules, 62, 76, 126–128, 150–151
Strict TER (STER), 132–133, 140
Student’s t-distribution, 176–177, 185, 229–230
Substantial evidence, 15
Superiority trials, 16, 23, 87
Survival:
 analysis, 203–204, 219
distributions, 45
System requirements, 253
t-distribution, 39, 238. See also Student’s t-distribution
Theta, 64
3 + 3 rules, 132–133
Three-stage design(s):
 characteristics of, 123–124
dose-escalation example, 145–146
optimal, 227
sequential, 224
testing, 126–128
validation, 227, 231
Time-point interactions, 200, 218, 237
Time-to-event analysis, 68
Time to progression (TTP), 84–86
TipDay, 2
Tip of the day, 182–183
Tiptext, 2
Titration design, 21
Toolbar, 2–3, 182
Tools menu, 13
Toxicity, 1, 21, 129–133, 136, 138–139, 146–148, 168
Traditional escalation rules (TERs):
 characteristics of, 132–133, 135, 228
 $3 + 3$, 21, 140
Trial Monitor, 64–66
Trial simulation, validation of, 228
t-statistics, 194, 220, 236
Two one-sided test procedure, 22
Two-group design, 196–209
Two-parallel-arm clinical trial, 29
Two-stage adaptive design, 226
Two-stage designs, see specific types of two-stage designs
Two-stage dose-escalation design:
 example of, 144–145
 simulation, 137–138
Two-stage escalation algorithms, 1–2
Two-stage group sequential design, 54–55
Type 1 error(s):
 characteristics of, 23, 52–54, 99, 105, 212–213
 rate, 23, 27, 103, 119, 123, 126, 143, 145–146, 224, 239
Type II error(s):
 characteristics of, 143
 rate, 27, 146
Unbalanced design, 18
Unblinded data, 51
Underpowered designs, 25, 29–30
Undershooting, dose-escalation trial design, 137–138
Uniform distribution, 229
U.S. Food and Drug Administration (FDA):
 bioequivalence, 22
 drop-loser trial, 90
 trial design guidelines, 14–15
Univariate generation, 177–179
Upper bound, 150, 162–163
Utility:
 index, 126
 rules, 150
 stopping, 162–163
Utility-offset model, 151
Validation, 215–234
Validity, 23
<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>View menu</td>
<td>11–12</td>
</tr>
<tr>
<td>Virtual trial data:</td>
<td></td>
</tr>
<tr>
<td>random multibinomial generation</td>
<td>181–182</td>
</tr>
<tr>
<td>random multivariate generation</td>
<td>179–181</td>
</tr>
<tr>
<td>random number generation</td>
<td>177</td>
</tr>
<tr>
<td>random univariate generation</td>
<td>177–179</td>
</tr>
<tr>
<td>Wang-Tsiatis boundary</td>
<td>53–54, 105, 222–223</td>
</tr>
<tr>
<td>Washout period</td>
<td>20</td>
</tr>
<tr>
<td>Web site</td>
<td>12</td>
</tr>
<tr>
<td>Weibull distribution</td>
<td>177, 185, 229–230</td>
</tr>
<tr>
<td>Whitehead logistic ratio</td>
<td>218, 237</td>
</tr>
<tr>
<td>Whitehead triangle boundaries</td>
<td>63</td>
</tr>
<tr>
<td>Wilcoxon rank-sum test</td>
<td>196–197, 218, 237</td>
</tr>
<tr>
<td>Wilcoxon signed-rank test</td>
<td>187, 218, 235</td>
</tr>
<tr>
<td>William’s test</td>
<td>220, 239</td>
</tr>
<tr>
<td>Withdrawal, early</td>
<td>49. See also Dropouts</td>
</tr>
<tr>
<td>Word splitter</td>
<td>3</td>
</tr>
<tr>
<td>z-method</td>
<td>218</td>
</tr>
<tr>
<td>z-scale</td>
<td>221–222</td>
</tr>
<tr>
<td>z-statistic</td>
<td>52, 56–57, 59, 62</td>
</tr>
<tr>
<td>z-test</td>
<td>197, 237</td>
</tr>
<tr>
<td>z-transformation</td>
<td>190, 236</td>
</tr>
<tr>
<td>Z-value</td>
<td>119–120</td>
</tr>
</tbody>
</table>