Index

Active clamp networks
- bipolar active clamps, 357, 387, 388
- CMOS active clamps and latchup, 388, 390
- ESD-active clamp integration, 13, 27
- latchup of ESD power clamps, 357, 364, 365, 366, 377
- latchup sensitivity of ESD power clamps, 15, 69, 71, 192, 257, 420, 429, 430, 432

Active guard rings
- compensating active guard rings, 397, 400
- ESD, 192
- inverting signal guard rings, 13, 396
- latchup active guard rings, 393
- lateral electric field assist, 91, 96
- noise reduction network, 20

Alpha space
- generalized alpha space latchup criteria, 22, 432, 441

Avalanche
- avalanche breakdown, 14, 81, 82, 281, 282, 321
- avalanche multiplication, 62, 82, 321

Ballasting
- resistor ballasting, 247

Barak
- single event latchup (SEL), 36

Beta space
- beta space latchup criteria, 138, 142

BILLI (buried implanted layer for lateral isolation) structure
- heavily doped buried layers, 289

Bipolar transistors
- avalanche multiplication, 62, 82
- current gain-second breakdown metric, 60
- Gummel plot, 64
- Johnson limit condition, 121
- Kirk effect, 312
- lateral transistor models, 85
- triple well transistor models, 106–108
- vertical transistor models, 106, 108, 110

Borland, J.
- BILLI (buried implanted layer for lateral isolation) structure, 289–290

Boselli, G.
- scaling, 24
- substrate resistance, 302, 306

Buried grid (BGR) structure, 74, 257

Cable discharge event (CDE)
- cable discharge event induced latchup, 34
- event, 34, 35

Charged cable model, 34, 35, 217

Charged device model (CDM), 25

Cross section
- latchup cross section, 44

Deep trench
- bipolar transistors, 55, 60, 81
Deep trench (Continued)
ESD structures, 217
floating polysilicon-filled trench, 346
guard ring structures, 190, 232, 340, 422, 425
latchup, 206
polysilicon filled deep trench structures, 344

Design methodology
external latchup design methods, 435
internal latchup design methods, 211
substrate contact, 431
well contact, 195
well-substrate resistance space design plot, 138

Design rule checking (DRC)
design rules, 131, 193, 199, 408, 409, 438
guard rings, 413
placement of ESD networks, 421
virtual dummy ESD design levels, 421
virtual dummy latchup design levels, 421

Design systems
cellview, 422
checking systems, 412
guard ring parameterized cells, 422
hierarchical parameterized cells ESD design, 422
parameterized cells, 422
placement of ESD networks, 364
placement of ESD power clamps, 364, 365
symbol, 422
verification systems, 21
virtual dummy ESD design levels, 421
virtual dummy latchup design levels, 421
Voldman–Strang–Jordan methodology, 422

Differential generalized tetrode relationship
external injection source, 201, 412

Diodes
diode equation, 58, 64
self-heating, 59
series resistance, 58, 59, 258, 360, 370

Domino effect
latchup criteria with external source, 173
latchup propagation, 9

Dual well CMOS, 25, 106, 107, 192, 257, 269, 278

Dutton, R.
Dutton–Whittier model, 103
metallurgical junction model, 98

Duvvury, C.
latchup design verification, 427–428

Electrical instability, 1, 3, 125

Electrostatic discharge (ESD)
failure mechanisms, 25–28
Electrostatic discharge (ESD) circuit induced latchup
cable discharge event, 216, 217
Electrostatic discharge (ESD) power clamps
field oxide device (FOD), 26, 362
n-channel RC triggered clamps, 258, 361, 385
p-channel RC triggered clamps, 27, 357, 385

Estreich, D.B.
field assisted lateral bipolar model, 91
lateral bipolar model, 91
sensitivity factors, 131

External latchup
alpha particle source, 173
cable discharge event (CDE), 431
computer aided design methods, 412–413
cosmic ray source, 39
injection source to victim distance, 202
injection source, 168, 202
latchup Domino effect, 9, 177
relative orientation, 202

Feedback
avalanche multiplication, 62, 82, 321
regenerative feedback, 125–131

Floor planning
core, 240
global placement, 435
guard ring placements, 189, 425
guard rings, 189, 425
peripheral I/O, 14, 366
well and substrate contact placement, 429

Ground rules
external latchup rules, 412
fundamental latchup design rules, 408
voltage condition rules, 409

Guard rings
design rule checking (DRC), 413
ESD and guard ring integration, 391
guard ring efficiency, 106, 231–232, 234
latchup, 236–237
n-well, 190, 259, 360, 368, 370
structures, 189–191, 196, 232, 263, 392, 420
Gummel plots, 64
Hargrove, M.
- latchup simulation, 8
- transmission line model, 8

Heavily doped buried layers (HDBL)
- HDBL and substrate resistance, 184
- HDBL bipolar transistor performance impacts, 351
- HDBL MOSFET ESD impact, 184
- HDBL recombination time, 292–293

High voltage CMOS (HVCMOS)
- guard rings, 393
- LDMOS, 275, 329, 393

Huh, Y.
- inter-supply latchup 365, 366

Human body model (HBM), 33, 34

Instability
- electrical instability, 1, 3, 125
- regenerative feedback, 125–131

Internal latchup
- n-well, 190
- p-well, 190
- substrate, 111

Isolation structures
- deep trench (DT), 108, 329
- dual depth shallow trench isolation, 395
- LOCOS, 17, 85, 195, 274–275
- shallow trench isolation (STI), 257, 275–277
- trench isolation (TI), 9, 108, 202, 296, 317–328

Johnson limit
- voltage relationship, 121

Jordan, D.
- Cadence™ ESD design methodology, 422

Ker, M.-D.
- RC-triggered PFET MOSFET power clamp latchup, 27, 358

Latchup
- buried grid, 257
- deep trench, 208, 209
- heavily doped buried layer, 9, 184, 259
- shallow trench isolation (STI), 17, 36, 196, 257, 275, 371
- sub-collectors, 329
- substrate doping scaling, 258, 287, 310
- trench isolation, 17, 184, 196, 202, 257

LDMOS
- active guard ring concepts, 23, 191, 329
- inductive load issue, 28, 191, 203, 329
- reverse current problem, 23
- smart power, 10, 23, 28, 192, 203, 275, 329–330, 393, 407

Leakage mechanisms, 266

Lindmayer
- lateral bipolar model, 89, 91, 353
- Lindmayer–Schneider model, 86, 87

Linear energy transfer (LET)
- linear energy transfer threshold, 23, 43

LOCOS isolation
- LOCOS-defined ESD structure, 362
- n+/substrate diode, 247, 258, 357
- n+ to n-well lateral bipolar, 197, 290, 338
- n-well-to-n-well lateral bipolar, 100
- n-well-to-substrate diode, 247, 357
- p+/n-well diode, 26, 340, 358
- thick oxide MOSFET, 362

Logic disturb
- partial latchup, 131, 137

Machine model (MM), 34

Merged triple well
- bipolar current gain, 109, 111, 113, 115, 117, 119
- lateral bipolar transistor, 108
- vertical bipolar transistor, 346

Models
- cable discharge event (CDE), 431
- charged device model, 25
- human body model (HBM), 33
- machine model (MM), 34
- transmission line pulse (TLP) model, 24, 221

Morris, W.
- buried grid (BGR), 74, 257
- heavily doped buried layers (HDBL), 23, 24

MOSFET
- avalanche breakdown and snapback, 81, 82
- dielectric breakdown, 275
- gate-induced drain leakage (GIDL), 267
- MOSFET instability, 1

Noise
- latchup and noise, 28

n-well design
- diffused well, 261, 262
- high energy well implant, 348, 400
- retrograde well, 266
Passive guard rings
integration of active and passive guard rings, 391, 395
n-well rings, 392
p⁺ substrate rings, 394
Power clamps
bipolar ESD power clamps, 11, 13, 357, 400
CMOS power clamps, 8, 270
diode string ESD power clamp, 363, 365
latchup events in power clamps, 357, 364
latchup prevention using power clamps, 375
Power-sequencing
ESD networks, 13
I/O, 358
mixed voltage interface, 11, 13, 357, 400
multiple power domains, 411
multiple power supplies, 30
p-well
connecting implant, 115, 270
dual well CMOS, 17, 269
Recombination and generation mechanisms
Auger recombination, 75, 184, 314
gold recombination centers, 78
lifetimes, 20
Shockley–Hall–Read (SHR) recombination, 73, 121
Retrograde wells
n-well, 261, 263, 267, 425
p-well, 22
retrograde well substrate modulation, 22, 23, 267
sheet resistance, 266
Rubin, L.
buried grid (BGR), 74, 258, 295
heavily doped buried layers (HDBL), 9, 24, 184
latchup simulation, 8, 273
Rung, R.D
deep trench CMOS, 207
Safe area
generalized alpha space safe area relationship, 154, 175
Salicide
cobalt salicide, 424
emitter resistance, 277
latchup stability criteria, 277
titanium salicide, 17, 424
Salicide block mask
bipolar, 277
diodes, 56
MOSFETs, 277, 278
resistors 384, 396
Scaling
depth trench scaling, 328
n-well scaling, 269
p⁺/n⁺ space scaling, 273
p-well scaling, 269
shallow trench isolation, 275
substrate doping concentration scaling, 258
 trench isolation, 317
Sensitivity parameters, 132
Sequence dependent ESD networks, 362
Sequence independent ESD networks
floating-well ESD network, 374
pin-power sequencing, 29
power supply sequencing, 381
voltage islands, 435
Shallow trench isolation, 275
Silicide
abrupt junctions, 79
Silicon controlled rectifiers
generalized tetrode relationship, 340, 342
holding current relationship, 137
regenerative feedback analysis, 125
Single event latchup (SEL)
alpha particle induced latchup, 178
cosmic ray induced latchup, 39, 42
heavy ion induced latchup, 40, 42
linear energy transfer (LET) threshold, 23
linear energy transfer (LET), 182
Smart power
active guard rings, 91, 191, 391, 393
compensating active guard rings, 397
external latchup, 168
guard ring, 189, 232, 234
high voltage CMOS, 275, 407
LDMOS, 392
passive guard rings, 392
Snapback
 bipolar, 259
 MOSFET, 363, 371

Stability
 electrical stability, 132
 generalized differential tetrode relationship, 154, 160
 thermal stability, 132

Standards
 ESD association transient latchup upset (TLU) standard, 24
 JEDEC latchup standard, 216, 217, 320

Stellari, F.
 latchup characterization, 240
 ESD circuit induced latchup, 240

Strang, S.E.
 Cadence-based ESD design methodology, 422

Sub-collectors
 heavily doped sub-collectors 312, 340
 lightly doped sub-collectors 323

Substrates
 epitaxial wafers, 259
 heavily doped substrates, 115, 180, 257, 258
 lightly doped substrates, 115, 180
 retrograde modulation effect, 267

System level
 battery reversal, 6
 inductive mismatch, 369
 reverse polarity issue 369

System level model
 cable discharge event (CDE), 431

Test
 external latchup characterization, 203
 internal latchup characterization, 16, 192, 205, 209, 213
 wafer level latchup characterization, 217

Test techniques
 chip level, 411
 product level, 214, 216
 system level, 368, 400

Transient latchup
 testing, 213
 theory, 160

Transient latchup upset (TLU), 223, 226

Transmission line pulse (TLP) testing, 222

Triple well
 buried layer, 9, 108–110
 vertical parasitic NPN, 121, 402

Troutman, R.R.
 epitaxial wafer model, 112
 generalized differential tetrode model, 142
 guard ring efficiency model, 231, 233
 SAFE model, 154
 transfer resistance method, 117
 transient latchup, 160
 transmission line model, 112, 114

Verification systems
 Habitz–Galland–Washburn, 419
 Ker–Jiang–Peng–Shieh, 425
 Kimura–Tsujikawa, 428
 Li, 415
 Ramaswamy–Sinha–Kadamati–Gharpurey method, 426
 Voldman–Sullivan–Nickel–Bass, 421
 Zhan–Feng–Wu–Chen–Guan–Wang, 418

Voldman, S.
 active guard ring networks, 352
 biased deep trench (DT) structure, 9, 328
 Cadence-based methodology, 422
 computer aided design (CAD) latchup method, 407
 deep trench (DT), 328
 deep trench (DT)–log (substrate resistance) plots, 334
 deep trench (DT) guard rings, 329
 domino effect theory, 9, 173, 177
 dual depth shallow trench isolation (STI), 12, 275, 295
 edge implants, 295
 epitaxial grown sub-collector, 312
 ESD circuit induced latchup, 247
 global placement latchup CAD methodology, 436
 guard ring resistance CAD methodology, 423
 guard rings, 189–191, 233, 413, 422
 high resistivity substrate, 278
 implanted sub-collector, 24, 296, 323, 324, 326
 LOCOS isolation, 274–275
 merged triple well, 24, 108, 205, 279, 282, 288, 348
 n-well substrate modulation, 22, 23, 267
Voldman, S. (Continued)
parameterized cell (Pcell) guard rings, 422
p-well and scaling, 269, 270, 273
retrograde wells, 263
shallow trench isolation (STI), 275
sub-collectors 312, 323, 340
substrate resistance scaling, 111, 257, 306
substrate resistance, 301
TLP pico-second current analysis (PICA) tool, 24, 243
trench isolation (TI), 317
triple well, 277

Wang, A.Z.
checking systems, 413
extraction methods, 420, 426
verification systems, 427, 428

Watson, A.
deep trench (DT), 328
depth trench (DT) guard rings, 329
guard ring efficiency, 231

Weger, A.
ESD circuit induced latchup, 247
TLP-PICA tool, 246

Wells
diffused wells, 261
retrograde wells, 261, 267, 275, 424
scaling, 19, 269, 273
triple well and isolated MOSFETs, 277, 278, 279
vertically modulated well, 23
well ballast resistors, 192, 241, 410

Zappe, H.
transient latchup, 160, 161, 164, 223, 225, 226

Zhan, R.Y.
checking system, 412
extraction, 412, 415, 418, 419, 420, 426
model graph (MG), 10
verification system, 10, 427, 428