CONTENTS

Contributors xi
Preface xiii

1 Amine-Catalyzed Cascade Reactions 1
Aiguo Song and Wei Wang

1.1 Introduction, 2
1.2 Enamine-Activated Cascade Reactions, 3
 1.2.1 Enamine–Enamine Cascades, 3
 1.2.1.1 Design of Enamine–Enamine Cascades, 3
 1.2.1.2 Examples of Enamine–Enamine and Enamine–Enamine
 Cyclization Cascades, 3
 1.2.1.3 Enamine–Enamine in Three-Component Cascades, 6
 1.2.1.4 Enamine-Activated Double α-Functionalization, 7
 1.2.1.5 Robinson Annulations, 7
 1.2.2 Enamine–Iminium Cascades, 8
 1.2.2.1 Design of Enamine–Iminium Cascades, 8
 1.2.2.2 Examples of [4 + 2] Reactions with Enamine-Activated
 Dienes, 8
 1.2.2.3 Inverse-Electron-Demand [4 + 2] Reactions with
 Enamine-Activated Dienophiles, 13
 1.2.2.4 Enamine–Iminium–Enamine Cascades, 16
 1.2.3 Enamine Catalysis Cyclization, 19
 1.2.3.1 Design of Enamine-Cyclization Cascade Reactions, 19
 1.2.3.2 Enamine-Intermolecular Addition Cascades, 19
1.2.3.3 Enamine-Intramolecular Addition Cascades, 20
1.2.3.4 Enamine-Intramolecular Aldol Cascades, 21

1.3 Iminium-Initiated Cascade Reactions, 21
 1.3.1 Design of Iminium–Enamine Cascade Reactions, 21
 1.3.2 Iminium-Activated Diels–Alder Reactions, 22
 1.3.3 Iminium-Activated Sequential [4+2] Reactions, 24
 1.3.4 Iminium-Activated [3+2] Reactions, 25
 1.3.5 Iminium-Activated Sequential [3+2] Reactions, 27
 1.3.6 Iminium-Activated [2+1] Reactions, 30
 1.3.6.1 Iminium-Activated Cyclopropanations, 30
 1.3.6.2 Iminium-Activated Epoxidations, 32
 1.3.6.3 Iminium-Activated Aziridinations, 34
 1.3.7 Iminium-Activated Multicomponent Reactions, 35
 1.3.8 Iminium-Activated [3+3] Reactions, 37
 1.3.8.1 Iminium-Activated All-Carbon-Centered [3+3] Reactions, 37
 1.3.8.2 Iminium-Activated Hetero-[3+3] Reactions, 40
 1.3.9 Other Iminium-Activated Cascade Reactions, 42

1.4 Cycle-Specific Catalysis Cascades, 42
1.5 Other Strategies, 45
1.6 Summary and Outlook, 46

References, 46

2 Brønsted Acid–Catalyzed Cascade Reactions 53
Jun Jiang and Liu-Zhu Gong

2.1 Introduction, 54
2.2 Protonic Acid–Catalyzed Cascade Reactions, 55
 2.2.1 Mannich Reaction, 55
 2.2.2 Pictect–Spengler Reaction, 56
 2.2.3 Biginelli Reaction, 58
 2.2.4 Povarov Reaction, 59
 2.2.5 Reduction Reaction, 60
 2.2.6 1,3-Dipolar Cycloaddition, 61
 2.2.7 Darzen Reaction, 65
 2.2.8 Acyclic Aminal and Hemiaminal Synthesis, 66
 2.2.9 Rearrangement Reaction, 67
 2.2.10 α,β-Unsaturated Imine-Involved Cyclization Reaction, 69
 2.2.11 Alkylation Reaction, 69
 2.2.12 Desymmetrization Reaction, 70
 2.2.13 Halocyclization, 71
 2.2.14 Redox Reaction, 72
 2.2.15 Isocyanide-Involved Multicomponent Reaction, 73
 2.2.16 Other Protonic Acid–Catalyzed Cascade Reactions, 75

2.3 Chiral Thiourea (Urea)–Catalyzed Cascade Reactions, 75
 2.3.1 Neutral Activation, 76
2.3.1 Halolactonization, 76
2.3.1.2 Mannich Reaction, 77
2.3.1.3 Michael–Aldol Reaction, 78
2.3.1.4 Michael-Alkylation Reaction, 79
2.3.1.5 Cyano-Involved Michael-Cyclization Reaction, 82
2.3.1.6 Michael-Hemiketalization (Hemiacetalization) Reaction, 84
2.3.1.7 Michael–Henry Reaction, 87
2.3.1.8 Michael–Michael Reaction, 90
2.3.1.9 Petasis Reaction, 94
2.3.1.10 Sulfur Ylide–Involved Michael-Cyclization Reaction, 95
2.3.1.11 α-Isothiocyanato Imide–Involved Cascade Reaction, 96
2.3.1.12 α-Isocyanide–Involved Cascade Reaction, 98

2.3.2 Anion-Binding Catalysis, 99
2.3.2.1 Pictet–Spengler Reaction, 99
2.3.2.2 Other Iminium Ion–Involved Cascade Reaction, 101
2.3.2.3 Oxocarbenium Ion–Involved Cascade Reaction, 103

2.4 Brønsted Acid and Transition Metal Cooperatively Catalyzed Cascade Reactions, 104
2.4.1 Dual Catalysis, 105
2.4.2 Cascade Catalysis, 108
2.4.2.1 Pd(0)/Brønsted Acid System, 109
2.4.2.2 Ruthenium/Brønsted Acid System, 109
2.4.2.3 Au(I)/Brønsted Acid System, 113
2.4.2.4 Other Binary Catalytic Systems, 114

2.5 Conclusions, 116
References, 117

3 Application of Organocatalytic Cascade Reactions in Natural Product Synthesis and Drug Discovery 123
Yao Wang and Peng-Fei Xu

3.1 Introduction, 123
3.2 Amine-Catalyzed Cascade Reactions in Natural Product Synthesis, 125
3.2.1 Iminium-Ion-Catalyzed Cascade Reactions in Natural Product Synthesis, 125
3.2.2 Cycle-Specific Cascade Catalysis in Natural Product Synthesis, 129
3.2.2.1 Iminium–Enamine Cycle-Specific Cascade Catalysis, 130
3.2.2.2 Enamine (/Dienamine)–Iminium Cycle-Specific Cascade Catalysis, 132
3.2.2.3 More Complex Cycle-Specific Cascade Catalysis, 134
3.3 Brønsted Acid–Catalyzed Cascade Reactions in Natural Product Synthesis, 137
3.4 Bifunctional Base/Brønsted Acid–Catalyzed Cascade Reactions in Natural Product Synthesis, 139
3.5 Summary and Outlook, 140
References, 142
4 Gold-Catalyzed Cascade Reactions 145
Yanzhao Wang and Liming Zhang

4.1 Introduction, 145
4.2 Cascade Reactions of Alkynes, 147
 4.2.1 Cascade Reactions of Enynes, 147
 4.2.1.1 Cascade Reactions of 1,6-Enynes, 147
 4.2.1.2 Cascade Reactions of 1,5-Enynes, 149
 4.2.1.3 Cascade Reactions of 1,4-Enynes, 151
 4.2.1.4 Cascade Reactions of 1,3-Enynes, 152
 4.2.1.5 Cascade Reactions of 1,\(n\)-Enynes (\(n > 6\)), 154
 4.2.2 Cascade Reactions of Propargyl Carboxylates, 156
 4.2.3 Cascade Reactions of ortho-Substituted Arylalkynes, 161
 4.2.4 Cascade Reactions of Other Alkynes, 165
4.3 Cascade Reactions of Allenes, 170
4.4 Cascade Reactions of Alkenes and Cyclopropanes, 173
4.5 Closing Remarks, 174
References, 174

5 Cascade Reactions Catalyzed by Ruthenium, Iron, Iridium, Rhodium, and Copper 179
Yanguang Wang and Ping Lu

5.1 Introduction, 179
5.2 Ruthenium-Catalyzed Transformations, 180
5.3 Iron-Catalyzed Transformations, 185
5.4 Iridium-Catalyzed Transformations, 191
5.5 Rhodium-Catalyzed Transformations, 194
5.6 Copper-Catalyzed Transformations, 202
5.7 Miscellaneous Catalytic Reactions, 215
5.8 Summary, 219
References, 219

6 Palladium-Catalyzed Cascade Reactions of Alkenes, Alkynes, and Allenes 225
Hongyin Gao and Junliang Zhang

6.1 Introduction, 226
6.2 Cascade Reactions Involving Alkenes, 226
 6.2.1 Double Mizoroki–Heck Reaction Cascade, 226
 6.2.2 Cascade Heck Reaction/C—H Activation, 227
 6.2.3 Cascade Heck Reaction/Reduction/Cyclization, 230
 6.2.4 Cascade Heck Reaction/Carbonylation, 231
 6.2.5 Cascade Heck Reaction/Suzuki Coupling, 232
 6.2.6 Cascade Amino-/oxopalladation/Carbopalladation Reaction, 234
6.3 Cascade Reactions Involving Alkynes, 237
 6.3.1 Cascade Heck Reactions, 238
6.3.2 Cascade Heck/Suzuki Coupling, 238
6.3.3 Cationic Palladium(II)-Catalyzed Cascade Reactions, 239
6.3.4 Cascade Heck Reaction/Stille Coupling, 241
6.3.5 Cascade Heck/Sonogashira Coupling, 243
6.3.6 Cascade Sonogashira Coupling–Cyclization, 244
6.3.7 Cascade Heck and C–H Bond Functionalization, 247
6.3.8 Cascade Reactions Initiated by Oxopalladation, 253
6.3.9 Cascade Reactions Initiated by Aminopalladation, 256
6.3.10 Cascade Reactions Initiated by Halopalladation or Acetoxy palladation, 259
6.3.11 Cascade Reactions of 2-(1-Alkynyl)-alk-2-en-1-ones, 263
6.3.12 Cascade Reactions of Propargylic Derivatives, 263
6.4 Cascade Reactions Involving Allenes, 264
6.4.1 Cascade Reactions of Monoallenes, 264
6.4.2 Cross-Coupling Cyclization of Two Different Allenes, 274
6.5 Summary and Outlook, 276
Acknowledgments, 277
References, 277

7 Use of Transition Metal–Catalyzed Cascade Reactions in Natural Product Synthesis and Drug Discovery 283

Peng-Fei Xu and Hao Wei

7.1 Introduction, 283
7.2 Palladium-Catalyzed Cascade Reactions in Total Synthesis, 284
7.2.1 Cross-Coupling Reactions, 284
7.2.1.1 Heck Reaction, 284
7.2.1.2 Stille Reaction, 291
7.2.1.3 Suzuki Coupling Reaction, 297
7.2.2 Tsuji–Trost Reaction, 301
7.2.3 Other Palladium-Catalyzed Cascade Reactions in Total Synthesis, 303
7.3 Ruthenium-Catalyzed Cascade Reactions in Total Synthesis, 305
7.4 Gold- and Platinum-Catalyzed Cascade Reactions in Organic Reactions, 318
7.5 Copper- and Rhodium-Catalyzed Cascade Reactions in Organic Synthesis, 322
7.6 Summary, 326
References, 326

8 Engineering Mono- and Multifunctional Nanocatalysts for Cascade Reactions 333

Hexing Li and Fang Zhang

8.1 Introduction, 334
8.2 Heterogeneous Monofunctional Nanocatalysts, 335
8.2.1 Metal-Based Monofunctional Nanocatalysts, 335
8.2.2 Metal Oxide–Based Monofunctional Nanocatalysts, 340
8.2.3 Organometallic-Based Monofunctional Nanocatalysts, 340
8.2.4 Graphene Oxide–Based Monofunctional Nanocatalysts, 343
8.3 Heterogeneous Multifunctional Nanocatalysts, 344
8.3.1 Acid–Base Combined Multifunctional Nanocatalysts, 344
8.3.2 Metal–Base Combined Multifunctional Nanocatalysts, 349
8.3.3 Organometallic–Base Combined Multifunctional Nanocatalysts, 349
8.3.4 Binary Organometallic–Based Multifunctional Nanocatalysts, 350
8.3.5 Binary Metal–Based Multifunctional Nanocatalysts, 352
8.3.6 Metal–Metal Oxide Combined Multifunctional Nanocatalysts, 353
8.3.7 Organocatalyst–Acid Combined Multifunctional Nanocatalysts, 353
8.3.8 Acid–Base–Metal Combined Multifunctional Nanocatalyst, 356
8.3.9 Triple Enzyme–Based Multifunctional Nanocatalysts, 356
8.4 Conclusions and Perspectives, 359
References, 360

9 Multiple-Catalyst-Promoted Cascade Reactions 363

Peng-Fei Xu and Jun-Bing Ling

9.1 Introduction, 363
9.2 Multiple Metal Catalyst–Promoted Cascade Reactions, 364
 9.2.1 Catalytic Systems Involving Palladium, 365
 9.2.2 Catalytic Systems Involving Other Metals, 368
9.3 Multiple Organocatalyst–Promoted Cascade Reactions, 370
 9.3.1 Catalytic Systems Combining Multiple Amine Catalysts, 371
 9.3.2 Catalytic Systems Combining Amine Catalysts and Nucleophilic
 Carbenes, 380
 9.3.3 Catalytic Systems Combining Amine and Hydrogen-Bonding
 Donor Catalysts, 385
 9.3.4 Catalytic Systems Involving Other Organocatalysts, 390
9.4 Metal/Organic Binary Catalytic System–Promoted Cascade Reactions, 394
 9.4.1 Catalytic Systems Combining Secondary Amine and Metal
 Catalysts, 394
 9.4.2 Catalytic Systems Combining Brønsted Acid and Metal
 Catalysts, 404
 9.4.3 Catalytic Systems Combining Hydrogen-Bonding Donor
 and Metal Catalysts, 411
 9.4.4 Catalytic Systems Combining Other Organo- and Metal
 Catalysts, 413
9.5 Summary and Outlook, 415
References, 415

Index 419