Index

Albrecht–Gaffney Model, 103–104
Actors, 96
AFP, 42
Agresti–Card–Glass Metric, 67–71
 Counting Rules, 69–70
 Engineering Rule, 71
 Example, 70–71
Algorithmic Models, 103–107
 Duration, 105
 Manual Models, 103–105
 Tools, 105–107
Arrival Rate Prediction Models,
 see Software Reliability
Availability Measurement, 170–178
 Availability Factors, 172–173
 Definition, 170
 Downtime Per Year, 170
 Measurement Complexities, 173–174
 Outage Scope, 173
 Rejuvenation, 174–177
Bailey–Basili Model, 103–104
Benchmarking, 231–237
Benefits in a business case, 216–217
Boehm Simple Model, 103–104
Bohrbugs, 175
Break-even point, 219
Business case
 For outsourcing, 199–201
 For software project launch, 209–224
 Realization of, 224
Capability Maturity Model Integration®,
 see Standards
Capital costs, 213–216, 226
Cash Flow, 217, 222–223, 226
CBR, see Cost Benefit Ratio
Chidamber and Kemerer Metric Suite,
 72–73
CMMI®, see Standards
COCOMO, 89, 94, 103–106, 132
Code integration, 182, 185–187
 Metric, 186–187
 Pattern, 186
 Plan, 187–189
Complexity, 52–78
 Computational, 74
 Conceptual, 73
 Cyclomatic Complexity, 58–63
 Halstead’s Metrics, 63–64
Complexity (Continued)
Information Flow Metrics, 65–67
Module Size and Complexity, 56–57
Objective, 54
Object-Oriented Metrics, 71–73
Structural Complexity Metrics, 55–73
System Complexity Metrics, 67–71
System Size and Complexity, 55–56
Cone of Uncertainty, 110–112
Continuous improvement, 242
Contract metrics, 203–206
COQUALMO, 132
COSMIC Full Function Points, 41
Cost Benefit Ratio, 217, 220–221, 226
Cost of Reliability, 147–148
Cost Performance Index, 240
Costs
Overhead, 210–211, 226
Risk, 211–213
Salaries, 210
CPI, see Cost Performance Index
Creeping Requirements, 81, 93
Customer satisfaction, 240, 246–249
Cyclomatic Complexity Metric, 58–63
Counting Rules, 58
Cyclomatic Complexity Density, 61
Engineering Rules, 60–61
Essential Cyclomatic Complexity, 61–63
Examples, 53–60
Dashboard, 243–244, 247
Deciding on metrics, 239–240
Decision maker model, 10
Defect Density
Benchmark Data, 133–135
Definition, 120
Defect Density Benchmark Data, 133–135
By Application Domain, 133
By SEI Level, 134
By Size in Function Points (1991), 134
Latent Defects, 135
Recommendations, 135
US Averages (2000), 134–135
Defect Projection Techniques and Models, 123–133
Dynamic Defect Models, 123–129
Static Models, 129–133
Defect Removal Efficiency, 130–132, 191–193
Definition, 130
DRE Matrix, 130–131
Defects, 118–143
Arrival Rates, 120
Backlog, 191–193
Benchmark Data, 133–135
Closure, 182, 188, 190–192
Cost Effectiveness of Removal, 136
Customer Reported Defect Patterns, 139
Defect Density, 120, 133–135
Discovery, 182, 188–190, 243–245
Dynamics and Behaviors, 118–123
Failures, 119–120
Faults, 119–120
Metrics, 11, 188–192
Simple Metric Example, 136–139
Versus Code Production Rate, 121
Versus Effort, 120
Versus Module Complexity, 122
Versus Staffing, 120–121
Versus System Size, 122–123
Depreciation, 215
Design-to-code expansion ratio, 39
Doty Model, 103–104
DRE See Defect Removal Efficiency
Drilling down, 243–247
Duration, 11
Dynamic Defect Models, 123–133
Customer Reported Defect Patterns, 139–140
Empirical Evidence, 128–129
Exponential, 127–128
Rayleigh, 124–127
Recommendations, 129
S-curve, 127–128
EAC, see Estimate at Completion
Effort, Estimating, 11, see also Estimating Effort
Eloquent metrics, 240–243
Engineering Rules
Agresti–Card–Glass Metric, 71
Creeping Requirements, 93
Cyclomatic Complexity Metric, 60–61
Defect Density, 135
Defect Removal Costs, 136
Response Time, 168–169
Estimation Uncertainty, 111–113
Function Points, 47–49, 92–93
Maintainability Index, 68
Reliability Prediction Techniques, 156–157
Schedule, 92
Staffing, 93
Estimate at Completion, 224–226
Estimate to Complete, 224–226
Estimating Effort, 79–119
Estimation, 79–117, see also Estimating Effort
Combining Estimates, 107–108
Issues, 108–112
Methodologies and Models, 79–106
When to Estimate, 112–113
Estimation Issues
Agile Methodology Results, 112
Estimation Uncertainties, 109–112
Estimation Uncertainty Engineering Rules, 111–112
Inadequate Budgets, 108–110
Limitations of Estimation, 109
Overconfidence in Experts, 111
Targets versus Estimates, 108–109
Estimation Methodologies and Models, 79–106
Algorithmic Models, 103–107
Analogy, 88–91
Benchmark Data, 85–88
Current Performance, 80–81
Custom Models, 101–103
Delphi Methods, 84–85
Engineering Rule—Creeping Features, 93
Engineering Rule—Effort, 93
Engineering Rules—Staffing, 93
Expert Opinion, 82–85
EZ Estimation Model, 85
Function Blocks, 84
Maintainability Index, 67–69
Proxy Points, 91–101
System Decomposition, 83–84
Work and Activity Decomposition, 82–83
ETC, see Estimate to Complete
EV, see Expected Value
Evolving metrics, 12, 247–250
Expected Value, 223–224, 226
Expense costs, 213–216
Exponential Defect Models, 127–128
Exponential Distribution, 123, 149–152
f(t), 149
F(t), 151
Failure Intensity, 146
Failure Severity Classes, 145–146
Failure—Definition, 119–120
Fault Classification, 175
Fault—Definition, 119–120
Feature Points, 50–51
Financial
Concepts, 209
Measures, 208–230
Performance, 240
Software engineer involvement, 208–209
Four D’s, 238–246
Function Points, 40–51, 92
Converting Function Points to Effort, 47–48
Converting Function Points to LOC, 47, See Gear Factors
COSMIC, 93–94
Counting Rules, 41–44
Engineering Rules, 47–49, 92
Example, 45–46
Productivity Benchmark, 87–88
Pros and Cons, 49–50
Effort Estimation, 92–93
Future Worth, 220
FW, see Future Worth
Gearing Factors, 35–39
General System Characteristics, 43
Goal Question Metric approach, see GQM
GQM, 9–10, 239, 247
GQM2, 11–12, 239
Halstead’s Metrics, 63–64
Hawthorne Effect, 21
Heisenbugs, 175
Hope-based Planning, 81
IFPUG, 41
Income Statement, see Profit & Loss Statement
Index of Variation, 26
Information Flow Metrics, 65–67
 Counting Rules, 65
 Examples, 65–67
 Henry and Kafura version, 65
 IEEE 982.2 version, 65
In-process metrics, 181–196
Inspection-effectiveness metric, 193–194
International Function Point Users
 Group, 41
International Software Benchmarking
 Standards Group, 87
ISBSG, 87
Kemerer Model, 103–104
Language Productivity Factors, 35–39
Latency Metrics, 167
Lines of Code
 Productivity Benchmark, 85–87
 Counting Rules, 34–39
Lorenz–Kidd Method, 41
Maintainability Index, 67–69
 Counting Rules, 67–68
 Engineering Rules, 68
 Example, 68–69
Management reserve, 222, 240
Matson–Barrett–Meltichamp Model,
 103–104
McCabe's Cyclomatic Complexity
 See
 Cyclomatic Complexity Metric
Mean-Time-Between-Failures
 (MTBF), 119
Measurement Theory, 22–29
 Central Tendency, 25
 Measurement Error, 28–29
 Measurement Reliability, 27
 Measurement Validity, 27–28
 Variability, 25–26
Measurement Validity, 27–28
 Construct, 27
 Content, 28
 Criterions-Related, 27
Mechanism for metrics collection and
 reporting, 11–12
Metrics
 Accuracy, 30
 Limitations, 30
 Precision, 30
Milestones, 182–185
 As gates, 184–185
 SMART, 183–185, 188
Models, 16–21
 Diagrammatic, 18
 Of Software Development, 17–18
 Text, 16
 Algorithmic, 18
 Meta-Model, 20–21
 Of Response Time, 18
 Motivation for studying estimation and
 metrics, 3–5
MTBF, 154
MTTF, 119, 149–150, 154, 170
MTTR, 154, 170
Object Points, 41, 94–95
Object-Oriented Design Metrics, 71–73
Outsourcing, 197–207
 Definition, 198–201
 Making the business case, 199–201
 Managing risk, 201–203
 Risk levels, 202–203
Overhead costs, see Costs
P&L Statement, see Profit & Loss
 Statement
Pantometric Paradigm, 19
Partial Rejuvenation, 175–176
Payback Period, 217, 219–220
Percent complete metric, 185
Power of Measurement, 21–22
Present Value, 220–226
Presenting metrics, 238–251
Process
 Adherence to, 7
 Effectiveness, 182, 192–194
 Productivity, 11, 86, 88, 217
 By Application Domain, 86
 By Platform Type, 88
 LOC Benchmarks, 85–89
Profit & Loss Statement, 217, 221–222, 226
Profitability, 7, 209
Progress
 Measuring, 181–196, 204, 224
 Testing, see Testing
Project management methodology, Affect
 on methodology, 183
SPI, see Schedule Performance Index
SPR Complexity Adjustment Factors, 44
Staffing Engineering Rule, 93
Standard Deviation, 26
Standards
 CMMI®, 4–6, 11, 202
 EIC 60880, 11
 ISO 9001, 202
 TL9000, 11
Standards driven metrics, 10–11
Static Defect Models
 Defect Removal Efficiency (DRE), 130–132
 Insertion and Removal Model, 129–130
 Tools—COQUALMO, 132
Stop-light technique, 241
Strncat, 15, 59, 63, 66
Supplier management, see Outsourcing
System Complexity Measurement, 67–71
 Agresti–Card–Glass Metric, 69–71
 Maintainability Index, 67–69
System size, see Size
Systematic Error, 28–29
Technical product performance, 240
Testing
 Execution, 243–245
 Progress, 182, 187–188, 242–243
Time
 Affect on metrics, 12, 247–250
 Affect on reliability, 153–154
 Measuring, 5
Triangulation, 107

UCP, UUCP See Use Case Points
UFP, 42
Uniform Distribution, 148
Use Case, 96
Use Case Methodologies, 95
Use Case Points, 96–101
Using Function Points, 96
Using LOC, 96
Use Case Points, 41, 96–101
 Calibration, 101
 Counting Rules, 96–98
 Effectiveness, 100–101
 Example, 98–100
Use Case Productivity Factor, 97, 101

VAF, 42
Variability
 Index of, 26
 Measures of, 25–26
 Range, 25
 Standard Deviation, 26
 Variance, 25
 Variance, 103–104

Walston–Felix Model, 103–104
WBS, see Work Breakdown Structure
WebMo, 41
Weibull Curves, 124
What to measure, 7–14
Work Breakdown Structure, 240

A, 149–152