Contents

Preface xv

Chapter 1 Introduction 1

1.1 Special Chemical Requirements of Biomolecules 1
1.2 Factors Affecting Analyte Structure and Stability 2
 1.2.1 pH Effects 3
 1.2.2 Temperature Effects 3
 1.2.3 Effects of Solvent Polarity 5
1.3 Buffering Systems Used in Biochemistry 6
 1.3.1 How Does a Buffer Work? 6
 1.3.2 Some Common Buffers 7
 1.3.3 Additional Components Often Used in Buffers 7
1.4 Quantitation, Units and Data Handling 7
 1.4.1 Units Used in the Text 7
 1.4.2 Quantification of Protein and Biological Activity 8
1.5 The Worldwide Web as a Resource in Physical Biochemistry 8
 1.5.1 The Worldwide Web 8
 1.5.2 Web-Based Resources for Physical Biochemistry 9
1.6 Objectives of this Volume 9
References 10

Chapter 2 Chromatography 11

2.1 Principles of Chromatography 11
 2.1.1 The Partition Coefficient 11
 2.1.2 Phase Systems Used in Biochemistry 12
 2.1.3 Liquid Chromatography 12
 2.1.4 Gas Chromatography 13
2.2 Performance Parameters Used in Chromatography 14
 2.2.1 Retention 14
 2.2.2 Resolution 15
 2.2.3 Physical Basis of Peak Broadening 15
 2.2.4 Plate Height Equation 15
 2.2.5 Capacity Factor 19
 2.2.6 Peak Symmetry 19
 2.2.7 Significance of Performance Criteria in Chromatography 20
2.3 Chromatography Equipment 20
 2.3.1 Outline of Standard System Used 20
 2.3.2 Components of Chromatography System 20
 2.3.3 Stationary Phases Used 20
 2.3.4 Elution 21
2.4 Modes of Chromatography 22
 2.4.1 Ion Exchange 22
 2.4.2 Gel Filtration 25
 2.4.3 Reversed Phase 28
 2.4.4 Hydrophobic Interaction 29
 2.4.5 Affinity 31
CONTENTS

2.4.6 Immobilized Metal Affinity Chromatography 35
2.4.7 Hydroxyapatite 37
2.5 Open Column Chromatography 37
2.5.1 Equipment Used 37
2.5.2 Industrial Scale Chromatography of Proteins 39
2.6 High Performance Liquid Chromatography (HPLC) 40
2.6.1 Equipment Used 40
2.6.2 Stationary Phases in HPLC 41
2.6.3 Liquid Phases in HPLC 42
2.6.4 Two Dimensional HPLC 42
2.7 Fast Protein Liquid Chromatography 43
2.7.1 Equipment Used 43
2.7.2 Comparison with HPLC 44
2.8 Perfusion Chromatography 44
2.8.1 Theory of Perfusion Chromatography 44
2.8.2 Practice of Perfusion Chromatography 45
2.9 Membrane-Based Chromatography Systems 45
2.9.1 Theoretical Basis 45
2.9.2 Applications of Membrane-Based Separations 46
2.10 Chromatography of a Sample Protein 47
2.10.1 Designing a Purification Protocol 47
2.10.2 Ion Exchange Chromatography of a Sample Protein: Glutathione Transferases 48
2.10.3 HPLC of Peptides From Glutathione Transferases 50
References 50

Chapter 3 Spectroscopic Techniques 53

3.1 The Nature of Light 53
3.1.1 A Brief History of the Theories of Light 53
3.1.2 Wave-Particle Duality Theory of Light 55
3.2 The Electromagnetic Spectrum 55
3.2.1 The Electromagnetic Spectrum 55
3.2.2 Transitions in Spectroscopy 56
3.3 Ultraviolet/Visible Absorption Spectroscopy 58
3.3.1 Physical Basis 58
3.3.2 Equipment Used in Absorption Spectroscopy 61
3.3.3 Applications of Absorption Spectroscopy 62
3.4 Fluorescence Spectroscopy 64
3.4.1 Physical Basis of Fluorescence and Related Phenomena 64
3.4.2 Measurement of Fluorescence and Chemiluminescence 68
3.4.3 External Quenching of Fluorescence 69
3.4.4 Uses of Fluorescence in Binding Studies 72
3.4.5 Protein Folding Studies 73
3.4.6 Resonance Energy Transfer 73
3.4.7 Applications of Fluorescence in Cell Biology 75
3.5 Spectroscopic Techniques Using Plane-Polarized Light 77
3.5.1 Polarized Light 77
3.5.2 Chirality in Biomolecules 78
3.5.3 Circular Dichroism (CD) 79
3.5.4 Equipment Used in CD 80
3.5.5 CD of Biopolymers 81
Chapter 5 Electrophoresis

5.1 Principles of Electrophoresis
 5.1.1 Physical Basis
 5.1.2 Historical Development of Electrophoresis
 5.1.3 Gel Electrophoresis

5.2 Nondenaturing Electrophoresis
 5.2.1 Polyacrylamide Nondenaturing Electrophoresis
 5.2.2 Protein Mass Determination by Nondenaturing Electrophoresis
 5.2.3 Activity Staining
 5.2.4 Zymograms

5.3 Denaturing Electrophoresis
 5.3.1 SDS Polyacrylamide Gel Electrophoresis
 5.3.2 SDS Polyacrylamide Gel Electrophoresis in Reducing Conditions
 5.3.3 Chemical Crosslinking of Proteins – Quaternary Structure
 5.3.4 Urea Electrophoresis

5.4 Electrophoresis in DNA Sequencing
 5.4.1 Sanger Dideoxynucleotide Sequencing of DNA
 5.4.2 Sequencing of DNA
 5.4.3 Footprinting of DNA
 5.4.4 Single Strand Conformation Polymorphism Analysis of DNA

5.5 Isoelectric Focusing (IEF)
 5.5.1 Ampholyte Structure
 5.5.2 Isoelectric Focusing
 5.5.3 Titration Curve Analysis
 5.5.4 Chromatofocusing

5.6 Immunoelectrophoresis
 5.6.1 Dot Blotting and Immunodiffusion Tests with Antibodies
 5.6.2 Zone Electrophoresis/Immunodiffusion Immunoelectrophoresis
 5.6.3 Rocket Immunoelectrophoresis
 5.6.4 Counter Immunoelectrophoresis
 5.6.5 Crossed Immunoelectrophoresis (CIE)

5.7 Agarose Gel Electrophoresis of Nucleic Acids
 5.7.1 Formation of an Agarose Gel
 5.7.2 Equipment for Agarose Gel Electrophoresis
 5.7.3 Agarose Gel Electrophoresis of DNA and RNA
 5.7.4 Detection of DNA and RNA in Gels

5.8 Pulsed Field Gel Electrophoresis
 5.8.1 Physical Basis of Pulsed Field Gel Electrophoresis
 5.8.2 Equipment Used for Pulsed Field Gel Electrophoresis
 5.8.3 Applications of Pulsed Field Gel Electrophoresis

5.9 Capillary Electrophoresis
 5.9.1 Physical Basis of Capillary Electrophoresis
 5.9.2 Equipment Used in Capillary Electrophoresis
 5.9.3 Variety of Formats in Capillary Electrophoresis

5.10 Electroblotting Procedures
 5.10.1 Equipment Used in Electroblotting
 5.10.2 Western Blotting
 5.10.3 Southern Blotting of DNA
 5.10.4 Northern Blotting of RNA
 5.10.5 Blotting as a Preparative Procedure for Polypeptides
CONTENTS

5.11 Electroporation 196
 5.11.1 Transformation of Cells 196
 5.11.2 Physical Basis of Electroporation 196
References 196

Chapter 6 Three-Dimensional Structure Determination of Macromolecules 199

6.1 The Protein-Folding Problem 200
 6.1.1 Proteins are only Marginally Stable 200
 6.1.2 Protein Folding as a Two-State Process 203
 6.1.3 Protein-Folding Pathways 204
 6.1.4 Chaperones 206

6.2 Structure Determination by NMR 212
 6.2.1 Relaxation in One-Dimensional NMR 212
 6.2.2 The Nuclear Overhauser Effect (NOE) 214
 6.2.3 Correlation Spectroscopy (COSY) 215
 6.2.4 Nuclear Overhauser Effect Spectroscopy (NOESY) 217
 6.2.5 Sequential Assignment and Structure Elucidation 218
 6.2.6 Multi-Dimensional NMR 221
 6.2.7 Other Applications of Multi-Dimensional NMR 221
 6.2.8 Limitations and Advantages of Multi-Dimensional NMR 224

6.3 Crystallization of Biomacromolecules 225
 6.3.1 What are Crystals? 226
 6.3.2 Symmetry in Crystals 226
 6.3.3 Physical Basis of Crystallization 228
 6.3.4 Crystallization Methods 231
 6.3.5 Mounting Crystals for Diffraction 233

6.4 X-Ray Diffraction by Crystals 235
 6.4.1 X-Rays 235
 6.4.2 Diffraction of X-Rays by Crystals 235
 6.4.3 Bragg’s Law 236
 6.4.4 Reciprocal Space 238

6.5 Calculation of Electron Density Maps 239
 6.5.1 Calculation of Structure Factors 240
 6.5.2 Information Available from the Overall Diffraction Pattern 241
 6.5.3 The Phase Problem 241
 6.5.4 Isomorphous Replacement 242
 6.5.5 Molecular Replacement 244
 6.5.6 Anomalous Scattering 245
 6.5.7 Calculation of Electron Density Map 250
 6.5.8 Refinement of Structure 251
 6.5.9 Synchrotron Sources 253

6.6 Other Diffraction Methods 254
 6.6.1 Neutron Diffraction 254
 6.6.2 Electron Diffraction 254

6.7 Comparison of X-Ray Crystallography with Multi-Dimensional NMR 255
 6.7.1 Crystallography and NMR are Complementary Techniques 255
 6.7.2 Different Attributes of Crystallography- and NMR-derived Structures 256

6.8 Structural Databases 257
 6.8.1 The Protein Database 257
 6.8.2 Finding a Protein Structure in the Database 257
References 259
Chapter 7 Hydrodynamic Methods 263

7.1 Viscosity 263
 7.1.1 Definition of Viscosity 263
 7.1.2 Measurement of Viscosity 264
 7.1.3 Specific and Intrinsic Viscosity 265
 7.1.4 Dependence of Viscosity on Characteristics of Solute 266

7.2 Sedimentation 266
 7.2.1 Physical Basis of Centrifugation 266
 7.2.2 The Svedberg Equation 268
 7.2.3 Equipment Used in Centrifugation 269
 7.2.4 Subcellular Fractionation 272
 7.2.5 Density Gradient Centrifugation 273
 7.2.6 Analytical Ultracentrifugation 274
 7.2.7 Sedimentation Velocity Analysis 274
 7.2.8 Sedimentation Equilibrium Analysis 276

7.3 Methods for Varying Buffer Conditions 279
 7.3.1 Ultrafiltration 281
 7.3.2 Dialysis 282
 7.3.3 Precipitation 284

7.4 Flow Cytometry 286
 7.4.1 Flow Cytometer Design 286
 7.4.2 Cell Sorting 287
 7.4.3 Detection Strategies in Flow Cytometry 288
 7.4.4 Parameters Measurable by Flow Cytometry 288

References and Further Reading 290

Chapter 8 Biocalorimetry 293

8.1 The Main Thermodynamic Parameters 293
 8.1.1 Activation Energy of Reactions 293
 8.1.2 Enthalpy 295
 8.1.3 Entropy 295
 8.1.4 Free Energy 296

8.2 Isothermal Titration Calorimetry 296
 8.2.1 Design of an Isothermal Titration Calorimetry Experiment 296
 8.2.2 ITC in Binding Experiments 297
 8.2.3 Changes in Heat Capacity Determined by Isothermal Titration Calorimetry 297

8.3 Differential Scanning Calorimetry 300
 8.3.1 Outline Design of a Differential Scanning Calorimetry Experiment 300
 8.3.2 Applications of Differential Scanning Calorimetry 301

8.4 Determination of Thermodynamic Parameters by Non-Calorimetric Means 301
 8.4.1 Equilibrium Constants 301

References 302

Chapter 9 Bioinformatics 305

9.1 Overview of Bioinformatics 305

9.2 Sequence Databases 309
 9.2.1 Nucleotide Sequence Databases 309
CONTENTS xiii

9.2.2 Protein Sequence Databases 309
9.2.3 Genome Databases 309
9.2.4 Expressed Sequence Tag Databases 315
9.2.5 Single Nucleotide Polymorphism (SNP) Database 315
9.3 Tools for Analysis of Primary Structures 315
9.3.1 BLAST Programs 317
9.3.2 FastA 318
9.3.3 Clustal W 318
9.3.4 Hydropathy Plots 319
9.3.5 Predicting Secondary Structure 323
9.3.6 Identifying Protein Families 325
9.4 Tertiary Structure Databases 327
9.4.1 Cambridge Database 329
9.4.2 Protein Databank (PDB) 329
9.4.3 Specialist Structural Databases 331
9.5 Programs for Analysis and Visualization of Tertiary Structure Databases 334
9.5.1 Ras Mol/Ras Top 334
9.5.2 Protein Explorer 334
9.5.3 Py MOL 334
9.5.4 Web Mol 336
9.5.5 Swiss-Pdb Viewer 336
9.6 Homology Modelling 336
9.6.1 Modelling Proteins from Known Homologous Structures 340
9.6.2 Automated Modelling 342
9.6.3 Applications of Homology Modelling to Drug Discovery 346

References 346

Chapter 10 Proteomics 349

10.1 Electrophoresis in Proteomics 349
10.1.1 Two-Dimensional SDS PAGE 350
10.1.2 Basis of 2-D SDS PAGE 350
10.1.3 Equipment Used in 2-D SDS PAGE 350
10.1.4 Analysis of Cell Proteins 351
10.1.5 Free Flow Electrophoresis 353
10.1.6 Blue Native Gel Electrophoresis 354
10.1.7 Other Electrophoresis Methods Used in Proteomics 355
10.2 Mass Spectrometry in Proteomics 355
10.2.1 Tagging Methodologies Used in MS Proteomics 355
10.2.2 Isotope-Coded Affinity Tagging (ICAT) for Cysteine-Containing Proteins 357
10.2.3 Tagging of N- and C-Termini 358
10.2.4 Tagging for Tandem MS 359
10.3 Chip Technologies in Proteomics 359
10.3.1 Microarrays 359
10.3.2 Protein Biochips 362
10.3.3 SELDI-TOF MS on Protein Chips 362
10.4 Post-Translational Modification Proteomics 366
10.4.1 Proteolysis 366
10.4.2 Glycosylation 367
10.4.3 Oxidation 372
10.4.4 Protein Disulfides 374