INDEX

Note: Page numbers in italics refer to Figures; those in bold to Tables.

absorption, distribution, metabolism, and elimination (ADME)
age
 blood and tissue PK, 23
 enzyme systems, rate of maturation, 23–4
 excretory systems immaturity, 25
 maturity and senescence, 23
 neonates, 23–4
 in xenobiotic metabolism, 24
body composition, 25
drug exposure, 21
gender, 21–2
heritable traits/breeds, 28–9
PK response, human food safety effects, 12
pregnancy and lactation
depletion time determination, 26
disease/stress, 27–8
gentamicin, kinetic disposition, 26
plasma clearance, 26
acceptable daily intake (ADI)
antimicrobial drugs, 36
and safe concentration calculations, 37, 38
and toxicity profile, 54
toxicological, pharmacological/microbiological data, 53
acceptable single-dose intake (ASDI), 46
ADI see acceptable daily intake (ADI)
ADME see absorption, distribution, metabolism, and elimination (ADME)
Agricultural Research, Extension, and Education Reform Act (AREEA), 292
American College of Veterinary Internal medicine (ACVIM), 124–5
aminoglycosides
beta-lactams, 144
French cattle veterinarians, 145
genatmicine sulphate, 225
livestock species, 225
AMRA survey see Australian milk residue analysis (AMRA) survey
Animal Medicinal Drug Use Clarification Act (AMDUCA), 3–5, 122, 126, 210, 227, 292, 295
anti-infective agents
extralabel drug, 121–2
pharmacotherapeutics, 119
therapeutics, 120–121
antimicrobial drugs
disease prevalence, 123–4
National Cattlemen’s Beef Association, 122, 123
resistance, 124–5
antimicrobial-free beef products, 134
aquaculture production systems and chemicals, 161
drug use
acceptable residue levels, 168
antibiotics, 169
antimicrobial use, 170
antiparasitics and antifungals, 170–171
chloramphenicol, 170
continued monitoring programs, 171
drug approval process, 168–9
global organizations, 167, 168
terrestrial medicine, 170
veterinary drugs, 167
environmental contaminants
brominated flame retardants, 164
depthwater horizon oil spill, 163
feeds, 166
fish oils, 164
groundwater, 162
mercury accumulation, 165
metals accumulation, 165
nanotechnology, 166
organic pollutant, 163
organochlorine pesticides, 164
POPs, 163
PPCPs, 166
terrestrial pesticide, 165
waterborne pollutants, 162
land-based farms, 162
melamine adulteration, 171–4
production systems, 161–2
AREEA see Agricultural Research, Extension, and Education Reform Act (AREEA)
ASDI see acceptable single-dose intake (ASDI)
Australian milk residue analysis (AMRA) survey, 151
beef cattle production systems
animal identification, 127, 127
animal records, 127, 128
anti-infective agents, 119–22
antimicrobial drugs, 122–5
chronic disease, 127–8
common infectious diseases, 118–19, 119
disease challenges, 116, 117
feeding cattle, 116, 117
injection site lesions, 131, 131, 132
labels, 126
nondrug residues, 131–2
nursing calves, 116
parasiticides, 125
quality assurance programs, 133, 133–4
residue avoidance, 125–32
screening, 128, 129–130
training, 127
United States, 115
USDA-FSIS Red Books, 115
veterinary involvement, 125
weaned calf, 116
withdrawal times, 126, 126
Center for Veterinary Medicine (CVM), 9, 35
chemical contaminants, livestock contaminants, 303
description, 303–4
dioxins, 305
heptachlor, 304–5
melamine (ME) see melamine (ME)
radioactive contamination
and management
by-products, fracking see “fracking” operations
Ca–DTPA
(diethylenetriaminepentaacetate), 309
curies and becquerels, 308
fallout exposures, food-producing animals, 309
Japanese incident, radionuclides, 308
milk, postcrisis contamination areas, 310
nonexposed grazing animals, 309
therapeutic compounds, 310
tsunami-contaminated debris, 308
WDT after radionuclide exposure, 308
clenbuterol intoxication, 5
Committee for Medicinal Products for Veterinary Use (CVMP), 50
covariate analysis, 86–7, 87
dairy cattle production systems
meat and milk see meat and milk prevalence
AMRA survey, 151
drug residue data, 149, 150
European commission, 149, 151
European Medicines Agency (EMEA), 149
FAST, 149
FDA, 147
Food, Drug and Cosmetic Act, 147
FSIS, 148
milk samples tested, United States, 147, 148
PMO, 147
veterinary residues committee (VRC), 149
prophylactic drugs, 137–40
therapeutic drug, 140–6
dioxins, 234, 305
drug depletion, pharmacokinetics see also absorption, distribution, metabolism, and elimination (ADME)
absorption rate, 16–17
active pharmaceutical ingredients (API), 9
approved drugs uses, 10
bioavailability, 12
drug elimination, 15
drug exposure, 12
first-order elimination, 15
Guidance for Industry (GFI), 9
hepatic disposition, 17
human food safety concern, 10
in vivo drug behavior, 11
intermediate-extraction drugs, 18
intrinsic and extrinsic factors, 10–11
intrinsic hepatic clearance, 19
Michaelis–Menten process, 19
multi-compartmental model, 15
one-compartment body model, 15
PK principles, 20
renal clearance, 19
risk assessment principles, 10
steady state, 13–14
tissue binding, 13–14
tolerances, 10
total residue evaluation, 11
two-compartment body model, 15–16, 16
violative drug residues, 10
volume of distribution (Vd), 13–14
drug residue depletion, edible products
antimicrobial products, 36
Center for Veterinary Medicine (CVM), 35
milk discard times determination see milk discard times determination
risk assessment principles, 36
total residues see residue safety standards
xenobiotics and endogenous compounds, 36
European Public MRL Assessment Report (EPMAR), 56
FARAD see Food Animal Residue Avoidance and Depletion (FARAD) program

FAST see fast antimicrobial screen test (FAST)

fast antimicrobial screen test (FAST), 149
feed additives, EU policy and legislation, 59–60
food animal products and feed multiresidue confirmatory methods
LC-MS/MS-based, 268–70
LC-QIT MS-based, 271–3
LC-(Q)-TOF-based, 273–4
orbifrap-based, 275–6
“performance characteristic curve”, 268
selected examples, LC-MS-based confirmatory methods, 259, 260–267
unit resolution MS/MS and HRMS¹, 276–7

Food Animal Residue Avoidance and Depletion (FARAD) program
AMDUCA, 292
AREEA, 292
description, 290
drug and chemical database, 156
expert-mediated consultations
description, 295
residue-related inquiries, agent/drug class, 296, 298
stakeholders, 299
submission statistics, species, 296, 297
Web portal, residue-related questions submission, 296, 297

Global FARAD (gFARAD), 300
home page, website, 290, 291
regulatory drug information
human consumption, 293
mandatory waiting period/WDT, 293–4
new animal drug application (NADA), 293
No Observable Effect Level (NOEL), 293

VetGRAM see Veterinarian’s Guide to Residue Avoidance Management (VetGRAM)
requirements, veterinarians, 292
sheep and goats, 195, 196
WDI Lookup Tool, 299, 300

Food, Drug and Cosmetic Act, 147, 234
food safety and inspection service (FSIS), 148, 201, 210, 227, 228

Food Safety Modernization Act (FSMA), 290

Food Standards Australian and New Zealand Food Authority (FSANZ), 205
“fracking” operations
description, 310–311
proprietary additives, 311

FSANZ see Food Standards Australian and New Zealand Food Authority (FSANZ)

FSIS see food safety and inspection service (FSIS)

FSMA see Food Safety Modernization Act (FSMA)

“generally recognized as safe” (GRAS), 3

Gentamicin Piglet Injection, 225
Gentocin®, Pig Pump Oral Solution, 225

Global FARAD (gFARAD) program, 300

hepatic metabolic processes, 17–18
heptachlor (chlorinated hydrocarbon insecticide)
FARAD, 304–5
industrial ethanol plant, 304–5
pineapple growers and Hawaiian milk supply, 304

“human food safety evaluation” see drug residue depletion, edible products

injection site residue reference value (ISRRV), 55, 72
LC-MS/MS-based multiresidue confirmatory methods advantages, 268
EC Reference Laboratory, 269
matrix-matched calibration curves, 269
milk samples, 269
QuEChERS-type extraction procedure, 270
LC-QIT MS-based multiresidue confirmatory methods banned chemical substances, 272–3
description, 271
finfish species, 273
targeted drug classes, sulfonamides, 271–2
LC-(Q)-TOF-based multiresidue confirmatory methods antibiotics and veterinary drugs, 273–4
“Find by Formula” algorithm, 274
target analytes confirmation, 274
livestock commodities advantages, HRMS, 255
“analyte-specific” RT, 243
biological matrices, 235
chemical databases, 259
confirmation and identification, 238
confirmatory analysis, 236
decision limit (CCₐ) and detection capacity (CCₚ), 251–2
dual-stage HRMS, 242–3
essential elements, confirmatory methods, 248, 249
extraction and cleanup techniques, 245
food animal products and feed see food animal products and feed
food safety and veterinary drug use, 234
foods program key validation parameter requirements, 251, 252
GC-MS-/LC-MS-based methods, 257, 258
GFI-118, 250
HILIC-TOF MS system, 256
immunoaffinity cartridges/molecularly imprinted polymers, 245
IP assignment, MS-derived signal, 253, 254
IPs number, techniques and combinations, 253, 255
LC/GC, 237–8
LC-MS/MS, 239
malachite green and nitrofurans, 234
mass spectrometry (MS), 238
Mathieu Equation, 240
maximum permitted tolerances, MS, 253, 255
MS type and acquisition modes, CVM GFI-118, 250, 251
“novel”/“wonder” drugs, 239
orbitrap MS, 242
organic residues/contaminants, 253, 254
organic substances, 239
parameters, qualitative methods, 236, 237
“performance characteristic curve”, 237
probability, erroneous spectral assignment, 256
production, food animals, 233
QC requirements, 250
QqQ MS, 241
random error and nonrandom bias, 246
reconstituted ion chromatograph (RIC), 247
regulatory method development, validation and routine use, 247, 247
regulatory methods, residue analysis, 235, 236
residue monitoring program, FDA, 235
semiquantitative threshold criteria, 257
single-stage (HRMS), 241
soft ionization sources, 244
specialized LC system, 244
spectrometers, 240
system suitability and ruggedness testing, 248
targeted analysis, 239
livestock commodities (cont’d)
TOF analyzer, 241–2
validation, regulatory method, 248
veterinary drugs, 233
zero and nonzero tolerance, 234–5

marker residue depletion study
animal husbandry, 44
animals species, class, gender,
and maturity, 43–4
concomitant administration, drugs, 44
dose and administration, 44
drug products, persistent residues
at injection site, 46–7
large molecule products, withdrawal
period assignment, 47
milk discard times determination, 42–3
number of animals, 44
“research tolerance”, 46
sampling time intervals, 44–5
tissue sample analysis
and data report, 45
withdrawal time calculation, 45–6
mastitis–metritis–agalactia (MMA)
syndrome, 227
maximum residue limits (MRLs)
and CVMP, 50
definition, 49–50
EU policy, minor uses and minor
species (MUMS), 59
extrapolation, 57–8, 58
feed additives, EU policy and
legislation, 59–60
food commodities, 51–2
marketing authorizations, 52
off-label use, 60–61
pharmacologically active substances
classification, 50–51
prohibited drugs
Aristolochia spp
and preparations, 58
estradiol, 58
growth promoters, 58
scientific evaluation
ADI, toxicological data, 53
data requirements, 52–3
European Public MRL Assessment
Report (EPMAR), 56
injection site residue reference
value (ISRRV), 55
marker residue, 54
microbiological ADI, 53
in milk/eggs, 56
nonradiolabeled (“cold”) marker
residue study, 54
no-observable-adverse effect level
(NoAEL), 53
Official Journal of the European
Union, 56
pharmacological effects, 53
residues, levels of consumption, 55
“Summary Report”, 56
target tissues, ADI division,
54, 54
theoretical maximum daily intake
(TMID), 55–6
Veterinary Medicinal Products
(VICH), 53
substances list and classifications, 52
transition period, 52
veterinary medicinal products, 50
withdrawal period, 50
meat and milk
drug residues, dairy industry, 151
FARAD, 156
“on-farm” antibiotic screening
assays, 156
quality assurance program
administer drugs, 154
employee/family
awareness, 154–5
FDA-approved drugs, 153
management program, 153–4
practice healthy herd
management, 152–3
prevention protocol, 155
screening tests, 154
treatment records, 154, 155
valid veterinarian/client/patient
relationship (VCPR), 153
survey, 152
therapeutic drug use, 151–2
melamine (ME)
adulteration
center for veterinary medicine (CVM), 172–3
clinical disease, 172–3
contamination pet food and milk products, 172
global market, 174
Kjeldahl reaction, 173–4
nephrotoxicity, 172
shrimp feeds, 173
s-triazines, 171–2
description, 305
limit of detection (LOD), 306
pet food recall, US, 305–6
pharmacokinetic (PBPK) model, 307
plasma concentration–time profiles, 307, 307
rats and swine
concentration–time curves, edible tissues, 109, 110
contamination, pet food, 108
feed supply, 108
human health risk assessment, 108
plasma concentration–time simulation, 109, 110
urine data and plasma data, 109, 109
withdrawal intervals, 110–111
triazines, 306
milk discard times determination
drug metabolism, 41
marker residue depletion study, 39, 42–3
metabolism and comparative metabolism studies, 41–2
practical zero withdrawal, 41
target tissue, marker residue and tolerance determination, 39, 42
tolerance, 39–40
total residue depletion study, 40–41
milk withdrawal time, 6
MMA see mastitis–metritis–agalactia (MMA) syndrome
MRLs see maximum residue limits (MRLs)
National Residue Survey (NRS), 205–6
New Zealand Food Safety Authority (NZFSA), 206
NOEL see No Observable Effect Level (NOEL)
nonsteroidal anti-inflammatory drugs (NSAIDs)
Flunixin meglumine (Banamine), 226
Meloxicam (Metacam®, Boehringer Ingelheim), 227
pharmacogenomic studies, 226
in United States, 227
no-observable-adverse effect level (NOAEL), 53
No Observable Effect Level (NOEL), 293
NRS see National Residue Survey (NRS)
NSAIDs see nonsteroidal anti-inflammatory drugs (NSAIDs)
NZFSA see New Zealand Food Safety Authority (NZFSA)
orbitrap-based multiresidue confirmatory methods
drawbacks, 275
QuEChERS-type extraction procedure, 275–6
UPLC-Orbitrap, 275
pasteurized milk ordinance (PMO), 147
PBPK see physiologically based pharmacokinetic (PBPK) modeling
persistent organic pollutants (POPs), 163
pharmaceuticals and personal-care products (PPCPs), 166
physiologically based pharmacokinetic (PBPK) modeling
and classical compartmental analysis, 95, 96
in vivo studies, 96
melamine see melamine, rats and swine
model development and validation
Bayesian analysis, 104
calibration techniques, 101
physiologically based pharmacokinetic (PBPK) modeling (cont’d)
classical statistical method, 103
complicated model, 98, 98
cross-validation techniques, 104
food residue avoidance, 98, 99
mass balance equations, 99–100, 101
Michaelis–Menten enzyme, 99–100
Monte Carlo simulation, 103
parameters, 100
relative changes, plasma
concentration, 102, 102
simplified models, 97, 97
tissue compartments, 99, 100
visual inspection, simulation, 103, 103
software programs, 96
sulfamethazine, swine see
sulfamethazine
tissue drug concentration, 111
U.S. Environmental Protection Agency (US-EPA), 96–7
US-FARAD, 97
PMO see pasteurized milk ordinance (PMO)
POPs see persistent organic pollutants (POPs)
population pharmacokinetic (PK) model
benefits, 88
covariate analysis, 86–7, 87
limitations, 88–9
preslaughter withdrawal times see
preslaughter withdrawal times
sick animal PK parameters, 89
U.S. tolerance limit detection, 90
veterinary medicine, 90
PPCPs see pharmaceuticals and
personal-care products (PPCPs)
preslaughter withdrawal times
calculation, 82
D-optimal design, 83
elimination profile, 82, 83
intraindividual error, 84, 86
non-linear mixed effects approach, 83
predicted concentrations vs. time, 84, 85
statistical programs, 84
steady state plasma concentrations, 82, 83
prophylactic drugs
dairy cattle
anthelmintics, 139–40
antibiotics, 137–8
dry-cow therapy, 138–9
ionophores, 140
oral replacements, 139
sheep and goat
American animal health institute, 196–7
commonly used drugs, 197, 197
feedlot, 198
H. contortus, 197–8
U.S. FDA issues, 198
quality assurance programs
AMDUCA, 4–5
anthelmintic resistance, 213–14
avoiding drug residues, 212, 213
Canadian food inspection agency, 211
catastrophic drug residue, 4
consumers, 4
extralabel drug use, 211
food-producing industries, 211–12
livestock producers, steps for, 4
measurement, control drug residues, 214–15
responsible use of medicines agriculture alliance (RUMA), 212–13
SSQA, 212
training programs, 212
Web-based training and certification programs, 212
“research tolerance”, 46, 47
residue avoidance, production systems
aquaculture see aquaculture production systems
beef cattle see beef cattle production systems
dairy cattle see dairy cattle production systems
sheep and goat see sheep and goat production systems
swine see swine production systems
residue safety standards
ADI value, 36
allowable incremental increase limits, 36
endogenous substance, 38
exposure evaluation and mitigation, 38–9
human food safety concerns, 37
safe concentrations calculation and ADI partition, 37
safe concentration from linear regression (SCLR), 73, 74
safe concentration per milking (SCPM), 73, 74
sheep and goat production systems economic significance, 194
“extralabel”/“off-label”, 194–5, 210
FARAD, 195, 196
gastrointestinal (GI) parasitism, 195
health management and promotion, 208–9
legislative efforts, 209–10
“major” and “minor” species, 193–4
mandated residue monitoring, 210
parasites, 195
prevalence
Australian residue samplings, 206, 206–7
European communities issues, 204–5
Food Standards Australia and New Zealand Food Authority (FSANZ), 205
β-lactams and sulfonamides, 208
lamb liver sample, 202, 203, 204
meat consumption, 201, 202
microbial inhibitor-based test, 208
National Residue Program (NRP) data, 201
National Residue Survey (NRS), 205–6
New Zealand Food Safety Authority (NZFSA), 206
samples tested, FSIS, 201, 202
veterinary services, China, 207
producer education, 210
prophylactic use, 196–8
quality assurance programs, 211–15
therapeutic use, 199–200
sheep safety and quality assurance (SSQA) program, 212
sulfamethazine
Animal Medicinal Drug Use Clarification Act, 104
drug residues, prediction, 105, 106
disposable tissues, 105, 107
meat withdrawal interval, 107
Monte Carlo analysis, 105
muscle concentration, 105, 108
parameter values, 105, 107
PBPK model, 104
sulfonamides
porcine colibacillosis, 225
tolerance and MRL values, 226
“Summary Report”, 56
swine production systems drugs, 221
prevalence, drug residues
Carbadox, 227
FSIS domestic scheduled sampling, 2013, 228–9, 229
residue violations, 227
U.S. FSIS drug residue monitoring, 2010, 227–8, 228
prophylactic use
antimicrobials, 222
Aureomycin Type A, 223
over-the-counter (OTC) status, 222
ractopamine concentration, 223
tylosin (Paylean®, Tylan®), 224
withdrawal time (WDT), 223
quality assurance programs, 229–30
therapeutic use
aminoglycosides, 225
antimicrobials, drug classes, 224, 224
antiparasitic drugs, 224, 225
swine production systems (cont’d)
NSAIDs see nonsteroidal anti-inflammatory drugs (NSAIDs)
sulfonamides, 225–6
tetracyclines, 225, 226
USDA Export Verification Program, 230
tetracyclines
antiparasitic drugs, 225, 226
feed additive, 226
IM oxytetracycline formulations, 226
theoretical maximum daily intake (TMDI), 55–6
therapeutic drugs
dairy cattle
antimicrobial use, 140–141, 141
Australia, 146
European countries, 142, 144–6
extralabel drug use, 142, 146
French cattle veterinarians, 145
Italian cattle veterinarians, 144
Netherlands, 144
Pennsylvania, 142
Switzerland, 144
United States approved drugs, 143
Washington State, 141–2
sheep and goat, 199–200
time to safe concentration (TTSC), 73–4
TMDI see theoretical maximum daily intake (TMDI)
total residue depletion study, 40–41
TTSC see time to safe concentration (TTSC)
Veterinarian’s Guide to Residue Avoidance Management (VetGRAM)
FDA-approved food animal drugs, 294
home page, 294, 295
mobile phone application, 295, 296
veterinary drug residues
adverse human health effects, 5
antimicrobial resistance, 6–7
economic impact, 7
in livestock
AMDUCA, 3
antibiotics, 3
antimicrobial dosages, 3
GRAS, 3
hormone growth promoters, 2–3
phytoceuticals, 3
subtherapeutic drug, 2
therapeutic drug, 3
quality assurance programs, 4–5
WDT determinations, 6
VetGRAM see Veterinarian’s Guide to Residue Avoidance Management (VetGRAM)
withdrawal periods, EU
eggs
data evaluation, 75
residue studies, 75
extrapolation
different formulation/dosing/routes, administration, 77
identical products, 76–7
major and minor species, 76
for honey, 76
injection site residues, 70–72
marker residue, 66
maximum residue limits (MRLs), 65, 66
meat, 66–67, 67
milk, 73–5
safety span, 70
statistical method
European Medicines Agency, 70
linear regression model, 68
maximum residue limits (MRLs), 69
pharmacokinetic models, 68
residues depletion, 69
tolerance limits, calculation, 69
withdrawal time (WDT)
Liquamycin LA-200, 226
SERT outputs, 294
tetracycline residue violations, 223
and tolerance levels, 225