CONTENTS

Preface xi
Acknowledgments xxi

PART I BASIC CONCEPTS
1 Gate-level combinational circuits 1

1.1 Introduction 1
1.2 General description 2
1.3 Basic logical elements and data types 3

1.3.1 Logical elements 3
1.4 Data types 4

1.4.1 Four value systems 4
1.4.2 Data type groups 4
1.4.3 Number representation 5
1.4.4 Operators 5

1.5 Program skeleton 6

1.5.1 Port declaration 6
1.5.2 Program body 7
1.5.3 Signal declaration 7
1.5.4 Another example 8

1.6 Structural description 9
1.7 Testbench 12
3 Bibilographic notes: 8
1.9 Suggested experiments 8
1.9.1 Code for gate-level greater-than circuit 8
1.9.2 Code for gate-level binary decoder 8

2 Overview of FPGA and FPGA software 88
2.1 Introduction 88
2.2 FPGA 88
2.2.1 Overview of a general FPGA device 88
2.2.2 Overview of the Xilinx Spartan-3 devices 89
2.3 Overview of the Digilent N3 board 89
2.4 Development flow 89
2.5 Overview of the Xilinx ISE project navigator 89
2.6 Short tutorial on ISE project navigator 89
2.6.1 Create the design project and HDL codes 90
2.6.2 Create a testbench and perform the HDL simulation 90
2.6.3 Add a constraint file and synthesize and implement the code 91
2.6.4 Generate and download the configuration file to an FPGA device 91
2.7 Short tutorial on the ModelSim HDL simulator 91
2.8 Bibliographic notes 91
2.9 Suggested experiments 91
2.9.1 Gate-level greater-than circuit 91
2.9.2 Gate-level binary decoder 91

3 Gate-level combinational circuit 99
3.1 Introduction 99
3.2 Operators 99
3.2.1 Arithmetic operators 100
3.2.2 Shift operators 100
3.2.3 Relational and equality operators 100
3.2.4 Bitwise, reduction, and logical operators 100
3.2.5 Concatenation and replication operators 100
3.2.6 Conditional operators 100
3.2.7 Operator precedence 100
3.2.8 Expression bit-length adjustment 100
3.2.9 Synthesis of \(x \) and \(y \) values 100
3.3 Always block for a combinational circuit 100
3.3.1 Basic syntax and behavior 100
3.3.2 Procedural assignment 100
3.3.3 Variable data types 100
3.3.4 Simple examples 100
4.3 Simple design examples...
 4.3.1 Shift register...
 4.3.2 Binary counter and variant...
4.4 Testbenches for sequential circuits...
4.5 Case study...
 4.5.1 LED time-multiplexing circuit...
 4.5.2 Stopwatch...
 4.5.3 FPD buffer...
4.6 Bibliographic notes...
4.7 Suggested experiments...
 4.7.1 Programmable square wave generator...
 4.7.2 PWM and LTPD dimmer...
 4.7.3 Rotating square circuit...
 4.7.4 Heartbeat circuit...
 4.7.5 Rotating LED timer circuit...
 4.7.6 Enhanced stopwatch...
 4.7.7 Stack...

5 Introduction...
 5.1 Introduction...
 5.1.1 Ideal and linear circuits...
 5.1.2 FSM representation...
5.2 FSM code development...
5.3 Design examples...
 5.3.1 Rising-edge detector...
 5.3.2 Debouncing circuit...
 5.3.3 Testing circuit...
5.4 Bibliographic notes...
5.5 Suggested experiments...
 5.5.1 Dual-edge detector...
 5.5.2 Alternative debouncing circuit...
 5.5.3 Parking lot occupancy counter...

6 Introduction...
 6.1 Introduction...
 6.1.1 Single RT operation...
 6.1.2 ASMD chart...
 6.1.3 Decision box with a register...
6.2 Code development of an ASMD...
 6.2.1 Debouncing circuit based on RT methodology...
 6.2.2 Code with explicit data path components...
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1</td>
<td>Physical interface of a PS2 port</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Device-to-host communication protocol</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Design and code</td>
</tr>
<tr>
<td>9.3</td>
<td>PS2 keyboard scan code</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Overview of the scan code</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Scan code monitor circuit</td>
</tr>
<tr>
<td>9.4</td>
<td>PS2 keyboard interface circuit</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Basic design and I/O code</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Verification circuit</td>
</tr>
<tr>
<td>9.5</td>
<td>Bibliographic notes</td>
</tr>
<tr>
<td>9.6</td>
<td>Suggested experiments</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Alternative keyboard interface I</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Alternative keyboard interface II</td>
</tr>
<tr>
<td>9.6.3</td>
<td>PS2 receiving subsystem with watching timer</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Keyboard-controlled stopwatch</td>
</tr>
<tr>
<td>9.6.5</td>
<td>Keyboard-controlled rotating LED fan</td>
</tr>
<tr>
<td>10</td>
<td>PS2 Mouse</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.2</td>
<td>PS2 mouse protocol</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Basic operation</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Basic initialization procedure</td>
</tr>
<tr>
<td>10.3</td>
<td>PS2 transmitting subsystem</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Host-to-PS2-device communication protocol</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Design and code</td>
</tr>
<tr>
<td>10.4</td>
<td>Bidirectional PS2 interface</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Basic design and code</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Verification circuit</td>
</tr>
<tr>
<td>10.5</td>
<td>PS2 mouse interface</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Basic design</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Testing circuit</td>
</tr>
<tr>
<td>10.6</td>
<td>Bibliographic notes</td>
</tr>
<tr>
<td>10.7</td>
<td>Suggested experiments</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Keyboard control circuit</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Enhanced mouse interface</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Mouse-controlled seven-segment LED display</td>
</tr>
<tr>
<td>11</td>
<td>Random Access Memory (RAM)</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>Specification of the IS61LV28616AL RAM</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Block diagram and I/O signals</td>
</tr>
</tbody>
</table>
1.2.2 Timing parameters 270
1.3 Basic memory controller 274
1.3.1 Block diagram 274
1.3.2 Timing requirements 275
1.3.3 Register file versus SRAM 276
1.4 Basic design 276
1.4.1 ASHMD chart 276
1.4.2 Timing analysis 277
1.4.3 VHDL implementation 278
1.4.4 Basic testing circuit 281
1.4.5 Comprehensive SRAM testing circuit 283
1.5 More aggressive design 288
1.5.1 Timing issues 288
1.5.2 Alternative design I 288
1.5.3 Alternative design II 290
1.5.4 Alternative design III 291
1.5.5 Advanced FPGA, features: Virtex, Xilinx 295
1.6 Bibliographic notes 294
1.7 Suggested experiments 294
1.7.1 Memory with a 512 x 16 configuration 294
1.7.2 Memory with a 1M x 8 configuration 295
1.7.3 Memory with an 8M x 1 configuration 295
1.7.4 Expanded memory testing circuit 295
1.7.5 Memory controller and testing circuit for alternative design I 295
1.7.6 Memory controller and testing circuit for alternative design II 295
1.7.7 Memory controller and testing circuit for alternative design III 295
1.7.8 Memory controller with I/O compilation 296
1.7.9 High performance memory controller 296

12 Xilinx Spartan-3 Spartan-3 Specific Memory 299
12.1 Introduction 299
12.2 Embedded memory of Spartan-3 device 299
12.2.1 Overview 299
12.2.2 Comparison 300
12.3 Method to incorporate memory modules 300
12.3.1 Memory module via HDL component instantiation 300
12.3.2 Memory module via Code Generator 300
12.3.3 Memory module via HDL inference 300
12.4 HDL templates for memory inference 306
12.4.1 Single port RAM 306
12.4.2 Dual port RAM 306
12.4.3 ROM 306
14.1 Introduction

14.2 Test generation
 14.2.1 Character set a file
 14.2.2 Font ROM
 14.2.3 Basic test generation circuit
 14.2.4 Font display circuit
 14.2.5 Font scaling

14.3 Tall screen test display

14.4 The complete pong game:
 14.4.1 Test subsystem
 14.4.2 Modified graphic subsystem
 14.4.3 Auxiliary controls
 14.4.4 Top-level system

14.5 Bibliographic notes

14.6 Suggested experiments
 14.6.1 Rotating banner
 14.6.2 Underline for the cursor
 14.6.3 Dual-mode test display
 14.6.4 Keyboard test entry
 14.6.5 UART terminal
 14.6.6 Square-wave display
 14.6.7 Sample four-serial logic analyzer
 14.6.8 Complete two-player pong game
 14.6.9 Complete breakout game

15 Introduction to MicroBlaze:

15.1 Introduction

15.2 Customized hardware and customized software
 15.2.1 From special-purpose ASMID to general-purpose microcontroller
 15.2.2 Application of microcontroller

15.3 Overview of MicroBlaze
 15.3.1 Basic organization
 15.3.2 Top-level I/O module modules

15.4 Development tools

15.5 Instruction set
 15.5.1 Programming model
 15.5.2 Instruction format
 15.5.3 Logical instructions
 15.5.4 Arithmetic instructions
 15.5.5 Compare and test instructions
15.5.6 Shift and rotate instructions
15.5.7 Data movement instructions
15.5.8 Program flow control instructions
15.5.9 Interrupt related instructions
15.6 Assembler directives
15.6.1 The KJPSMB directives
15.6.2 The PIFlash/DIF directives
15.7 Bibliographic notes

16 PIFlash/DIF Assembler Code Development
16.1 Introduction
16.2 Useful code segments
16.2.1 KJPSMB conventions
16.2.2 Bit manipulation
16.2.3 Multiple byte manipulation
16.2.4 Control structure
16.3 Subroutine development
16.4 Program development
16.4.1 Demonstration example
16.4.2 Program documentation
16.5 Processing of the assembly code
16.5.1 Compiling with KJPSMB
16.5.2 Simulation by PIFlash/DIF
16.5.3 Reloading code via the JTAG port
16.5.4 Compiling via PIFlash/DIF
16.6 Syntheses with PIFlash/DIF
16.7 Bibliographic notes
16.8 Suggested experiments
16.8.1 Signed multiplication
16.8.2 Multi-byte multiplication
16.8.3 Bessel shift function
16.8.4 Reverse function
16.8.5 Binary to BCD conversion
16.8.6 BCD to binary conversion
16.8.7 Decimal point circuit
16.8.8 Rotating BCD circuit
16.8.9 Discrete BCD shifter

17 PIFlash/DIF 8051 Interface
17.1 Introduction
17.2 Output port