INDEX

Acharya Raj, 431
Adaptive classifiers, 82
Adaptive-network-based fuzzy inference system (ANFIS), 125
Adaptive nonlinear kernel discriminant analysis, 70
Ahmad Shandar, 157
Araúzo-Bravo Marcos J., 157
Artificial neural networks, 90
Backpropagation algorithm, 125
Backward elimination, 12–14
Bagging, 135
Bayesian inference, 377–378
Bayesian model, 90, 357
Bayesian network, 351–352, 381
Bayes method, 176
Bidirectional promoters, 322
Binding sites, 166
Biological networks, 3
Biological pathways, 329
Biomarkers, 3, 443
Biomedical informatics, 431
Black-box methods, 112
Boosted genetic programming, 361
Boosting, 135, 309
Bootstrapping approach, 89–90
Bootstrapping consistency gene selection, 95
Bootstrapping consistency method, 91
Breast cancer data, 103–106
Bu Dongbo, 189
CaBIG (Cancer Bioinformatics Grid), 431
Cancer, 47–49, 90, 96, 98, 113, 368, 433, 438
Chanda Pritam, 389
Cheminformatics, 413
Chiang Hsiao-Dong, 263
Cholesky decomposition, 70
Classification, 8, 90
Classification consistency, 92–94
Clinical data, 433
Clustering algorithms, 434
Cluster kernels, 222
Coexpressed genes, 3
Colon cancer data set, 116
Common genes, 93
Complex diseases, 368
Composite kernels, 218
Computational genetic analysis, 368
Computational haplotype analysis, 373
Consensus model, 265
Consensus prediction, 191–194
Conserved motifs, 287
Consistency modeling, 89
Correspondence analysis, 440
Coulter counter, 414
Cross-validation, 5
Data-adaptive method (DA), 93
Data exploration, 432
Data mining, 2, 283, 292, 432
Data overfitting, 3
Data warehousing, 435
Decision forests, 135
Decision trees (DTs), 112, 323–324
Dimension reduction, 3
Disease association, 390
Disease-gene association, 368–369
Disease–SNP association, 390
Disulfide bridge prediction, 224
DNA-binding sites, 166
DNA samples, 113
DNA sequences, 23, 243, 264, 284, 303, 322
Domain-specific knowledge, 241
Dynamic programming, 221

Eigenvectors, 271
Elastic net, 55
Elnitski Laura L., 321
EM algorithm, 265–280
Energy minimization method, 176
Ensemble learning, 126, 135
Entropy-based approach, 398
Eukaryotic protein, 5
Evolutionary algorithm, 90, 339
Evolutionary computations, 297, 358
Evolutionary granular kernel trees, 230
Expectation-Maximization Method, 375

Feature dimension, 3–4
Feature extraction, 306, 418
Feature granules, 230
Feature reduction, 3
Feature representation, 1–3
Feature selection, 1–2, 135, 250, 309, 392
Feature spaces, 3
Filter method, 14
Fisher-based method, 5
Fisher discriminant analysis, 8, 69
Fisher discriminant ratio, 16
Fisher kernels, 219
Fisher’s linear discriminate, 90
F-ratio, 49–50,
Forward/backward probabilities, 419
Forward selection, 11
Fuzzy association rules, 131
Fuzzy-based classifiers, 115
Fuzzy-based gene selection approach, 119
Fuzzy clustering methods, 119
Fuzzy C-mean clustering (FCC) method, 120–122
Fuzzy decision surfaces, 130
Fuzzy k-nearest neighbors (k-NN) algorithm, 230
Fuzzy rule-based models, 112
Fuzzy rules, 112, 125
Fuzzy systems, 112, 125

Gao Xin, 189
Ganta Srivatsava R., 431
Gaussian radial basis function, 74
Genbank, 313–314
Gene expression data, 241, 443–444
Gene profiling, 2
Gene selection, 2, 89, 91
Generic tagging problem, 392
Genetic algorithm, 136, 232, 277, 344
Genetic algorithm-based feature selection, 146
Genetic information, 242
Genetic programming, 344
Genomic data, 1, 2, 5, 284, 431
Genomic data mining, 2
Genomic features, 3
Genomics, 389
Gibbs sampling, 265, 377
Granular computing (GrC), 231
Granular feature transformation, 230–232
Granular kernels, 232
Graphical models, 351
Grid systems, 431
Groupwise information, 11
Gubbi Jayavardhana, 209

Haplotype phasing methods, 378
Haplotype phasing problem, 374
Havukkala Ilkka, 89
Hessian matrix, 271
Heterogeneous data sets, 431
Heuristic multitask learning, 146
Heuristic search methods, 145
Hidden Markov models (HMM), 219, 245, 352, 406, 417
High dimensionality, 3
Ho L. S., 283
Hu Yingjie, 89
Human Genome Project (HGP), 284
Human genome sequence, 301

Information fusion, 432
Informative genes, 90
Integrated clustering tool, 444
Interfeature relationship, 9
Irrelevant genes, 3

Jin Bo, 229
Kasabov Nikola, 89
Kasturi Jyotsna, 431
Kernel discriminant analysis, 79
Kernel function, 29, 72, 231
Kernel matrix, 75–78
Kernel method, 72, 209, 339, 345
Kim Hyunsoo, 69
King David C., 321
K-means, 434
K-nearest neighbor (KNN) method, 112
Knowledge discovery, 283
Kullback–Leibler divergence, 303–317, 358
Kung Sun-Yuan, 1

Lee Phil H., 367
Leukemia cancer data set, 116
Leukemia data set, 5
Leukemia gene expression data set, 82
Li Guo-Zheng, 135
Li Ming, 189
Li Shuai Cheng, 189
Liao Li, 241
Linear combination features, 22
Linear kernels, 216
Linguistic terms, 112
Linguistic values, 119
Long-range features, 252
Lung cancer data, 103–106
Lymphoma cancer data set, 116

Machine learning, 2
Majority-voting method, 193
Mak Man-Wai, 1
Markov chain models, 287
Markov chain monte carlo, 377
Markov models, 283
Markov/neural hybrid approach, 286
MATLAB software, 66
Matrix decompositions, 70
Membrane proteins, 246
Menjoge Rajiv S., 47
Mercer’s kernel, 70
Microarray data, 2, 107, 122
Microarray experiments, 111–113
MicroRNAs (miRNAs), 339
MiRNA precursors, 344
Mismatch kernels, 220
Motif discovery problem, 263
Motif finding algorithms, 263–264
Motif refinement, 264
Multiclassification problem, 233
Multidimensional analysis, 438

Multiple linear regression (MLR), 171
Multitask learning, 145
Naive Bayes classifier, 355
Nam Jin-Wu, 339
Narasimhamurthy Anand, 431
Nearest neighbor method, 26, 49
Neural fuzzy ensemble method, 90
Neural networks, 136, 172, 194, 283, 302, 403
Neuro-fuzzy ensemble (NFE) model, 113
Noise sampling method, 90
Nonpromoters, 306
Nonrandom association, 370
Nuclear magnetic resonance spectroscopy (NMR), 189

Oncogenes, 339
One-versus-one voting approach, 234
Optimal feature selection, 3
Orthogonal encoding, 289
Overfitting, 16
Overtraining, 4

Pairwise association-based methods, 380
Pairwise feature information, 9
Pairwise interaction energy, 192
Pairwise scoring kernels, 29
Palade Vasile, 111
Palaniswami Marimuthu, 209
Pang Shaoning, 89
Parameterized genetic programming (PGP) method, 359
Park Haesun, 69
Partial least squares algorithm, 136
Polynomial kernels, 216
Position-specific scoring matrix (PSSM), 267
Principal component analysis (PCA), 90, 395, 442
Probabilistic graphical models, 339
Probabilistic models, 285
Profile alignment support vector machines, 5
Profile-based kernels, 222
Promoter, 284, 301, 322
Promoter prediction algorithm, 306
Protein-coding regions prediction, 301–303
Protein data bank (PDB), 246
Protein–DNA interactions, 166, 284
Protein folding, 205
Protein–protein interactions, 168
Protein sequence, 2, 209
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein structure</td>
<td>157, 189, 210</td>
</tr>
<tr>
<td>Protein structure prediction</td>
<td>217</td>
</tr>
<tr>
<td>Proteomics</td>
<td>389</td>
</tr>
<tr>
<td>QR decomposition</td>
<td>70</td>
</tr>
<tr>
<td>Quaternary structure structure</td>
<td>212</td>
</tr>
<tr>
<td>Radial basis function (RBF)</td>
<td>80–81, 344</td>
</tr>
<tr>
<td>Rajapakse Jagath C.</td>
<td>283</td>
</tr>
<tr>
<td>Ramanathan Murali</td>
<td>389</td>
</tr>
<tr>
<td>Random features</td>
<td>138</td>
</tr>
<tr>
<td>Random forests</td>
<td>50</td>
</tr>
<tr>
<td>Random number</td>
<td>122</td>
</tr>
<tr>
<td>Random variable</td>
<td>120</td>
</tr>
<tr>
<td>Receiver operating characteristics (ROC)</td>
<td>294–296, 333–335, 350</td>
</tr>
<tr>
<td>Recursive feature elimination (RFE)</td>
<td>26</td>
</tr>
<tr>
<td>Recursive SVM</td>
<td>26</td>
</tr>
<tr>
<td>Reddy Chandan K.</td>
<td>263</td>
</tr>
<tr>
<td>Redundancy</td>
<td>8, 9</td>
</tr>
<tr>
<td>Regression-based methods</td>
<td>394</td>
</tr>
<tr>
<td>RNA secondary structure</td>
<td>253</td>
</tr>
<tr>
<td>Rule-based systems</td>
<td>125</td>
</tr>
<tr>
<td>Sarai Akinori</td>
<td>157</td>
</tr>
<tr>
<td>Secondary structure of proteins</td>
<td>159–162, 211</td>
</tr>
<tr>
<td>Secondary structure prediction</td>
<td>159–170, 197</td>
</tr>
<tr>
<td>Sequence analysis</td>
<td>244</td>
</tr>
<tr>
<td>Shatkay Hagit</td>
<td>367</td>
</tr>
<tr>
<td>Shilton Alistair</td>
<td>209</td>
</tr>
<tr>
<td>Shrunken centroids</td>
<td>54</td>
</tr>
<tr>
<td>Signal processing architecture</td>
<td>417</td>
</tr>
<tr>
<td>Signal-to-noise ratio</td>
<td>2</td>
</tr>
<tr>
<td>Signed-FDR</td>
<td>15</td>
</tr>
<tr>
<td>Significance analysis of microarrays</td>
<td>90</td>
</tr>
<tr>
<td>Singh Yumlembam Hemjit</td>
<td>157</td>
</tr>
<tr>
<td>Single nucleotide polymorphisms (SNPs)</td>
<td>367, 389–410</td>
</tr>
<tr>
<td>Stochastic context-free grammars (SCFG)</td>
<td>252</td>
</tr>
<tr>
<td>Subcellular localization</td>
<td>5, 36</td>
</tr>
<tr>
<td>Subcellular locations of proteins</td>
<td>229</td>
</tr>
<tr>
<td>Suboptimal search</td>
<td>4</td>
</tr>
<tr>
<td>Supervised feature selection</td>
<td>14</td>
</tr>
<tr>
<td>Supervised learning algorithm</td>
<td>309</td>
</tr>
<tr>
<td>Supervised learning methods</td>
<td>344</td>
</tr>
<tr>
<td>Supervised selection criteria</td>
<td>14</td>
</tr>
<tr>
<td>closed-loop approach</td>
<td>14</td>
</tr>
<tr>
<td>open-loop approach</td>
<td>14</td>
</tr>
<tr>
<td>Support vectors</td>
<td>31, 70</td>
</tr>
<tr>
<td>Support Vector Machines (SVM)</td>
<td>23, 25, 28, 52, 70, 173, 195, 210, 231, 361, 405, 420</td>
</tr>
<tr>
<td>based wrapper methods</td>
<td>25</td>
</tr>
<tr>
<td>RFE, 26</td>
<td></td>
</tr>
<tr>
<td>Symmetric divergence</td>
<td>17</td>
</tr>
<tr>
<td>Systems biology</td>
<td>389</td>
</tr>
<tr>
<td>Tag SNP selection problem</td>
<td>379</td>
</tr>
<tr>
<td>T-Statistics</td>
<td>16, 49, 90</td>
</tr>
<tr>
<td>Three-dimensional structure</td>
<td>166, 303</td>
</tr>
<tr>
<td>Three-dimensional (3D) structure of a protein</td>
<td>189</td>
</tr>
<tr>
<td>Three-party problem</td>
<td>12</td>
</tr>
<tr>
<td>Time-delay neural network (TDNN)</td>
<td>287</td>
</tr>
<tr>
<td>Top-ranked genes</td>
<td>92</td>
</tr>
<tr>
<td>Traditional haplotype analysis</td>
<td>373</td>
</tr>
<tr>
<td>Tumor suppressors</td>
<td>339</td>
</tr>
<tr>
<td>Unsupervised methods</td>
<td>111</td>
</tr>
<tr>
<td>Variable order markov Model (VOMM)</td>
<td>331</td>
</tr>
<tr>
<td>Visualization</td>
<td>59, 61</td>
</tr>
<tr>
<td>Viterbi algorithm</td>
<td>418</td>
</tr>
<tr>
<td>Wang Zhenyu</td>
<td>111</td>
</tr>
<tr>
<td>Wavelet analysis</td>
<td>417</td>
</tr>
<tr>
<td>Weighted Voting</td>
<td>22</td>
</tr>
<tr>
<td>Welsch Roy E.</td>
<td>47</td>
</tr>
<tr>
<td>Weng Yao-Chung</td>
<td>263</td>
</tr>
<tr>
<td>Winters-Hilt Stephen</td>
<td>413</td>
</tr>
<tr>
<td>Wrapper methods</td>
<td>117</td>
</tr>
<tr>
<td>Wu Shuanhu</td>
<td>301</td>
</tr>
<tr>
<td>Xie Xudong</td>
<td>301</td>
</tr>
<tr>
<td>Xu Jinbo</td>
<td>189</td>
</tr>
<tr>
<td>Yan Hong</td>
<td>301</td>
</tr>
<tr>
<td>Yang Jack Y.</td>
<td>135</td>
</tr>
<tr>
<td>Yang Mary Q.</td>
<td>321</td>
</tr>
<tr>
<td>Yu Libo</td>
<td>189</td>
</tr>
<tr>
<td>Zhang Aidong</td>
<td>389</td>
</tr>
<tr>
<td>Zhang Byoung-Tak</td>
<td>339</td>
</tr>
<tr>
<td>Zhang Yan-Qing</td>
<td>229</td>
</tr>
</tbody>
</table>