Contents

List of Contributors XIII
Foreword XXIII

1 Introduction 1
Philippe Grelu
References 8

2 Temporal Cavity Solitons in Kerr Media 11
Stéphane Coen and Miro Erkintalo
2.1 Introduction 11
2.2 Mean-Field Equation of Coherently Driven Passive Kerr Resonators 13
2.3 Steady-State Solutions of the Mean-Field Equation 15
2.4 Existence and Characteristics of One-Dimensional Kerr Cavity Solitons 18
2.5 Original Experimental Observation of Temporal Kerr Cavity Solitons 21
2.6 Interactions of Temporal CSs 25
2.7 Breathing Temporal CSs 29
2.8 Emission of Dispersive Waves by Temporal CSs 31
2.9 Conclusion 34
References 34

3 Dynamics and Interaction of Laser Cavity Solitons in Broad-Area Semiconductor Lasers 41
Thorsten Ackemann, Jesus Jimenez, Yoann Noblet, Neal Radwell, Guangyu Ren, Pavel V. Paulau, Craig McIntyre, Gian-Luca Oppo, Joshua P. Toomey, and Deborah M. Kane
3.1 Introduction 41
3.2 Devices and Setup 43
3.2.1 Devices 43
3.2.2 Experimental Setup 44
3.3 Basic Observations and Dispersive Optical Bistability 45
5.5 Periodically Pumped Ring Cavities 119
5.6 Effects of Drift in a Periodically Pumped Ring Cavity 120
5.7 Summary 125
Acknowledgments 125
References 125

6 Dissipative Kerr Solitons in Optical Microresonators 129
Tobias Herr, Michael L. Gorodetsky, and Tobias J. Kippenberg
6.1 Introduction to Optical Microresonator Kerr-Frequency Combs 129
6.2 Resonator Platforms 131
6.2.1 Ultra High-Q (MgF$_2$) Crystalline Microresonators 131
6.2.2 Integrated Photonic Chip Microring Resonators 132
6.3 Physics of the Kerr-comb Formation Process 132
6.3.1 Nonlinear Coupled Mode Equations 135
6.3.2 Degenerate Hyperparametric Oscillations 138
6.3.3 Primary Sidebands 140
6.4 Dissipative Kerr Solitons in Optical Microresonators 141
6.4.1 Analytical Theory of Dissipative Kerr Solitons 141
6.5 Signatures of Dissipative Kerr Soliton Formation in Crystalline Resonators 145
6.6 Laser Tuning into the Dissipative Kerr Soliton States 147
6.7 Simulating Soliton Formation in Microresonators 148
6.8 Characterization of Temporal Dissipative Solitons in Crystalline Microresonators 149
6.9 Resonator Mode Structure and Soliton Formation 151
6.10 Using Dissipative Kerr solitons to Count the Cycles of Light 152
6.11 Temporal Solitons and Soliton-Induced Cherenkov Radiation in an Si$_3$N$_4$ Photonic Chip 155
6.12 Summary 157
References 158

7 Dynamical Regimes in Kerr Optical Frequency Combs: Theory and Experiments 163
Aurélien Coillet, Nan Yu, Curtis R. Menyuk, and Yanne K. Chembo
7.1 Introduction 163
7.2 The System 164
7.3 The Models 166
7.3.1 Modal Expansion Model 166
7.3.2 Spatiotemporal Model 167
7.3.3 Stability Analysis 168
7.4 Dynamical States 171
7.4.1 Primary Combs 171
7.4.2 Solitons 176
7.4.3 Chaos 179
8 Nonlinear Effects in Microfibers and Microcoil Resonators 189
Muhammad I. M. Abdul Khudus, Rand Ismaeel, Gilberto Brambilla, Neil G. R. Broderick, and Timothy Lee
8.1 Introduction 189
8.2 Linear Optical Properties of Optical Microfibers 191
8.3 Linear Properties of Optical Microcoil Resonators 193
8.4 Bistability in Nonlinear Optical Microcoil Resonators 195
8.4.1 Broken Microcoil Resonators 197
8.4.2 Polarization Effects in Nonlinear Optical Microcoil Resonators 198
8.4.3 Possible Experimental Verification 199
8.5 Harmonic Generation in Optical Microfibers and Microloop Resonators 200
8.5.1 Mathematical Modeling and Efficiency of Third Harmonic Generation 201
8.5.2 Third Harmonic Generation in Microloop Resonators 204
8.5.3 Second-Harmonic Generation 208
8.6 Conclusions and Outlook 209
References 209

9 Harmonic Laser Mode-Locking Based on Nonlinear Microresonators 213
Alessia Pasquazi, Marco Peccianti, David J. Moss, Sai Tac Chu, Brent E. Little, and Roberto Morandotti
9.1 Introduction 213
9.2 Modeling 215
9.3 Experiments 219
9.3.1 Short Cavity, Unstable Laser Oscillation 223
9.3.2 Short Cavity, Stable Laser Oscillation 224
9.3.3 Short Cavity, Dual-Line Laser Oscillation 226
9.4 Conclusions 228
References 229

10 Collective Dissipative Soliton Dynamics in Passively Mode-Locked Fiber Lasers 231
François Sanchez, Andrey Komarov, Philippe Grelu, Mohamed Salhi, Konstantin Komarov, and Hervé Leblond
10.1 Introduction 231
10.1.1 Dissipative Solitons and Mode-Locked Lasers 231
10.1.2 Multiple Pulses and Their Interactions 232
10.2 Multistability and Hysteresis Phenomena 234
10.2.1 Multiple Pulsing 234
10.2.2 Multistability Observations 235
10.2.3 Modeling Multiple Pulsing and Hysteresis 236
10.3 Soliton Crystals 238
10.3.1 From Soliton Molecules to Soliton Crystals 238
10.3.2 Soliton Crystal Experiments 239
10.3.3 Modeling Soliton Crystal Formations 240
10.3.4 Soliton Crystal Instability 243
10.4 Toward the Control of Harmonic Mode-Locking by Optical Injection 244
10.5 Complex Soliton Dynamics 247
10.5.1 Unfolding Soliton Dynamics 247
10.5.2 Analogy Between Soliton Patterns and the States of Matter 247
10.5.3 Soliton Rain Dynamics 250
10.5.4 Chaotic Pulse Bunches 252
10.6 Summary 256
Acknowledgments 257
References 257

11 Exploding Solitons and Rogue Waves in Optical Cavities 263
Wonkeun Chang and Nail Akhmediev
11.1 Introduction 263
11.2 Passively Mode-Locked Laser Model 266
11.3 The Results of Numerical Simulations 268
11.4 Probability Density Function 270
11.5 Conclusions 272
11.6 Acknowledgements 272
References 273

12 SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers 277
Sergey A. Babin, Evgeniy V. Podivilov, Denis S. Kharenko, Anastasia E. Bednyakova, Mikhail P. Fedoruk, Olga V. Shtyrina, Vladimir L. Kalashnikov, and Alexander A. Apolonski
12.1 Introduction 277
12.2 Generation of Highly Chirped Dissipative Solitons in Fiber Laser Cavity 279
12.2.1 Modeling 279
12.2.1.1 Analytical Solution of CQGLE in the High Chirp Limit 281
12.2.1.2 Comparison of Analytics with Numerics 284
12.2.2 Experiment and its Comparison with Simulation 286
12.2.3 NPE Overdriving and its Influence on Dissipative Solitons 288
12.3 Scaling of Dissipative Solitons in All-Fiber Configuration 290
12.3.1 Different Ways to Increase Pulse Energy, Limiting Factors 290
12.3.2 SRS Threshold for Dissipative Solitons at Cavity Lengthening 292
12.4 SRS-Driven Evolution of Dissipative Solitons in Fiber Laser Cavity 297
12.4.1 NSE-Based Model in Presence of SRS 297
12.4.1.1 Model Details 298
12.4.1.2 Simulation, Comparison with Experiment 299
12.4.2 Generation of Stokes-Shifted Raman Dissipative Solitons 302
12.4.2.1 Proof-of-Principle Experiment 304
12.4.3 Characteristics of Raman dissipative Solitons 306
12.4.3.1 Variation of the Soliton Spectra with Filter Parameters 306
12.4.3.2 Variation of the Soliton Spectra with the Raman Feedback Parameters 307
12.4.4 Generation of Multicolor Soliton Complexes and Their Characteristics 307
12.5 Conclusions and Future Developments 310
References 312

13 Synchronization in Vectorial Solid-State Lasers 317
Marc Brunel, Marco Romanelli, and Marc Vallet
13.1 Introduction 317
13.2 Self-Locking in Dual-Polarization Lasers 318
13.2.1 Vectorial Description of the Cavity 318
13.2.2 Self-Pulsing in Lasers with Crossed Loss and Phase Anisotropies 319
13.2.3 Polarization Self-Modulated Lasers 321
13.2.4 Mode-Locked Dual-Polarization Lasers 323
13.2.4.1 Phase Locking at c/4L 325
13.3 Dynamics of Solid-State Lasers Submitted to a Frequency-Shifted Feedback 327
13.3.1 Description of the System 327
13.3.1.1 Experimental Setup 328
13.3.2 Lang–Kobayashi Rate Equations 330
13.3.2.1 Phase Dynamics 331
13.3.2.2 Time-Scaled Rate Equations 331
13.3.3 Phase Locking 332
13.3.3.1 Continuous-Wave Case 332
13.3.3.2 Passive Q-Switching Case 333
13.3.4 Bounded Phase Dynamics 334
13.3.4.1 Intensity Bifurcation Diagram 334
13.3.4.2 Phase Bifurcation Diagram 336
13.3.4.3 Phasors 337
13.3.4.4 Role of the Coupling in the Active Medium 338
13.3.5 Measure of the Synchronization in the Bounded Phase Regime 339
13.4 Conclusion 341
Acknowledgments 341
References 341
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>Prototypical Example: Self-Tuning Mode-Locked Fiber Lasers</td>
<td>403</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Governing Equations</td>
<td>404</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Jones Matrices for Waveplates and Polarizers</td>
<td>404</td>
</tr>
<tr>
<td>16.4.3</td>
<td>Performance Monitoring and Objective Function</td>
<td>405</td>
</tr>
<tr>
<td>16.4.4</td>
<td>Sparse Representation for Birefringence Classification</td>
<td>405</td>
</tr>
<tr>
<td>16.4.5</td>
<td>Self-Tuning Laser</td>
<td>406</td>
</tr>
<tr>
<td>16.5</td>
<td>Broader Applications of Self-Tuning Complex Systems</td>
<td>409</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Phased Array Antennas</td>
<td>409</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Coherent Laser Beam Combining</td>
<td>411</td>
</tr>
<tr>
<td>16.5.3</td>
<td>Neuronal Stimulation</td>
<td>412</td>
</tr>
<tr>
<td>16.6</td>
<td>Conclusions and Technological Outlook</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>415</td>
</tr>
</tbody>
</table>

**17 Conclusion and Outlook** 419

Philippe Grelu

References 421

**Index** 423