Contents

About the Editors XV
List of Contributors XVII
Preface XXIII

Part I: Fundamentals 1

1 Quantum Spin Hall Effect and Topological Insulators 3
Frank Ortmann, Stephan Roche, and Sergio O. Valenzuela
References 9

2 Hybridization of Topological Surface States and Emergent States 11
Shuichi Murakami
2.1 Introduction 11
2.2 Topological Phases and Surface States 12
2.2.1 Topological Insulators and $Z_2$ Topological Numbers 12
2.2.2 Weyl Semimetals 13
2.2.3 Phase Transition between Topological Insulators and Weyl semimetals 15
2.3 Hybridization of Topological Surface States and Emergent States 19
2.3.1 Chirality of the Surface Dirac Cones 19
2.3.2 Thin Film 20
2.3.3 Interface between Two TIs 21
2.3.4 Superlattice 25
2.4 Summary 28
Acknowledgments 29
References 29
3 Topological Insulators in Two Dimensions
Steffen Wiedmann and Laurens W. Molenkamp

3.1 Introduction
3.2 2D TIs: Inverted HgTe/CdTe and Inverted InAs/GaSb Quantum Wells
3.2.1 HgTe/CdTe Quantum Wells
3.2.2 The System InAs/GaSb
3.3 Magneto-Transport Experiments in HgTe Quantum Wells
3.3.1 Sample Fabrication
3.3.2 Transition from $n$- to $p$-Conductance
3.3.3 Magnetic-Field-Induced Phase Transition
3.4 The QSH effect in HgTe Quantum Wells
3.4.1 Measurements of the Longitudinal Resistance
3.4.2 Transport in Helical Edge States
3.4.3 Nonlocal Measurements
3.4.4 Spin Polarization of the QSH Edge States
3.5 QSH Effect in a Magnetic Field
3.6 Probing QSH Edge States at a Local Scale
3.7 QSH Effect in InAs/GaSb Quantum Wells: Experiments
3.8 Conclusion and Outlook
Acknowledgements
References

4 Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators
M. Zahid Hasan, Su-Yang Xu, and Madhab Neupane

4.1 Introduction
4.2 $Z_2$ Topological Insulators
4.3 Topological Kondo Insulator Candidates
4.4 Topological Quantum Phase Transitions
4.5 Topological Dirac Semimetals
4.6 Topological Crystalline Insulators
4.7 Magnetic and Superconducting Doped Topological Insulators
Acknowledgements
References

Part II: Materials and Structures

5 Ab Initio Calculations of Two-Dimensional Topological Insulators

5.1 Introduction
5.2 Early Examples of 2D TIs
5.2.1 Graphene and the Quantum Spin Hall Effect
5.2.2 HgTe: Band Inversion and Topology in a 2D TI
5.3 Thin Bi and Sb Films  112
5.3.1 Bilayers  112
5.3.2 Thicker Layers  115
5.3.3 Alloyed Layers  118
5.3.4 Supported Layers  119
5.4 Compounds  121
5.4.1 Binary Compounds of $A_2B_3$ Type  122
5.4.2 Ternary Compounds: $A'A_2B_4$ and $A'_2A_2B_4$ Types  124
5.5 Summary  125
Acknowledgments  126
References  126

6  Density Functional Theory Calculations of Topological Insulators  131
Hyungjun Lee, David Soriano, and Oleg V. Yazyev
6.1 Introduction  131
6.2 Methodology  132
6.2.1 Foundations of Density Functional Theory  132
6.2.2 Practical Aspects of DFT Calculations  136
6.2.3 Including Spin–Orbit Interactions  139
6.2.4 Calculating $Z_2$ Topological Invariants  143
6.3 Bismuth Chalcogenide Topological Insulators: A Case Study  144
6.3.1 Bulk Band Structures of $\text{Bi}_2\text{Se}_3$ and $\text{Bi}_2\text{Te}_3$  144
6.3.2 Topologically Protected States at the (111) Surface of Bismuth
Chalcogenides  148
6.3.3 Nonstoichiometric and Functionalized Terminations of the $\text{Bi}_2\text{Se}_3$
(111) Surface  151
6.3.4 High-Index Surfaces of Bismuth Chalcogenides  155
6.4 Conclusions and Outlook  156
References  157

7  Many-Body Effects in the Electronic Structure of Topological
Insulators  161
Irene Aguilera, Ilya A. Nechaev, Christoph Friedrich, Stefan Blügel, and
Evgueni V. Chulkov
7.1 Introduction  161
7.2 Theory  163
7.3 Computational Details  166
7.4 Calculations  167
7.4.1 Beyond the Perturbative One-Shot $GW$ Approach  167
7.4.2 Analysis of the Band Inversion  169
7.4.3 Treatment of Spin–Orbit Coupling  170
7.4.4 Bulk Projected Band Structures  174
7.4.4.1 $\text{Bi}_2\text{Se}_3$  175
7.4.4.2 $\text{Bi}_2\text{Te}_3$  179
7.4.4.3 $\text{Sb}_2\text{Te}_3$  182
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Surface Electronic Structure of Topological Insulators</td>
<td>191</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>191</td>
</tr>
<tr>
<td>8.2</td>
<td>Bulk Electronic Structure of Topological Insulators and Topological</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Crystalline Insulators</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Bulk and Surface State Topology in TIs and TCIs</td>
<td>194</td>
</tr>
<tr>
<td>8.4</td>
<td>Surface Electronic Structure in Selected Cases</td>
<td>198</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Bi Chalcogenite-Based Topological Insulators</td>
<td>198</td>
</tr>
<tr>
<td>8.4.2</td>
<td>The Group V Semimetals and Their Alloys</td>
<td>200</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Other Topological Insulators</td>
<td>203</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Topological Crystalline Insulators</td>
<td>203</td>
</tr>
<tr>
<td>8.5</td>
<td>Stability of the Topological Surface States</td>
<td>207</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Stability with Respect to Scattering</td>
<td>207</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Stability of the Surface States' Existence</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>211</td>
</tr>
<tr>
<td>9</td>
<td>Probing Topological Insulator Surface States by Scanning Tunneling</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Microscope</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>217</td>
</tr>
<tr>
<td>9.2</td>
<td>Sample Preparation Methods</td>
<td>219</td>
</tr>
<tr>
<td>9.3</td>
<td>STM and STS on Topological Insulator</td>
<td>220</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Topography and Defects</td>
<td>221</td>
</tr>
<tr>
<td>9.3.2</td>
<td>STS and Band Structure of Topological Insulators</td>
<td>223</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Landau Quantization of Topological Surface States</td>
<td>225</td>
</tr>
<tr>
<td>9.4</td>
<td>Conductance Map Analysis of Topological Insulator</td>
<td>229</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Magnetically Doped Topological Insulator</td>
<td>233</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Superconductor, Topological Insulator, and Majorana Zero Mode</td>
<td>235</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>237</td>
</tr>
<tr>
<td>10</td>
<td>Growth and Characterization of Topological Insulators</td>
<td>245</td>
</tr>
<tr>
<td>10.1</td>
<td>History of Bismuth-Based Material Synthesis</td>
<td>245</td>
</tr>
<tr>
<td>10.2</td>
<td>Synthesis and Characterization of Crystals and Films</td>
<td>246</td>
</tr>
<tr>
<td>10.3</td>
<td>Native Defects and Achieving Bulk Insulation</td>
<td>252</td>
</tr>
<tr>
<td>10.4</td>
<td>New Material Candidates and Future Directions</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>260</td>
</tr>
</tbody>
</table>
Part III: Electronic Characterization and Transport Phenomena 265

11 Topological Insulator Nanostructures 267
Seung Sae Hong and Yi Cui
11.1 Introduction 267
11.2 Topological Insulators: Experimental Progress and Challenges 268
11.3 Opportunities Enabled by Topological Insulator Nanostructures 270
11.4 Synthesis of Topological Insulator Nanostructures 271
11.4.1 Vapor-Phase Growth 271
11.4.2 Solution-Phase Growth 273
11.4.3 Exfoliation 273
11.4.4 Heterostructures 274
11.4.5 Doping and Alloying 275
11.5 Fermi Level Modulation and Bulk Carrier Control 276
11.6 Electronic Transport in Topological Insulator Nanostructures 279
11.6.1 Weak Antilocalization and Magnetic Topological Insulators 280
11.6.2 Shubnikov–de Haas Oscillations 280
11.6.3 Insulating Behavior at Ultrathin Limit 283
11.6.4 Aharonov–Bohm Effect and 1D Topological States 283
11.6.5 Superconducting Proximity Effect in TI Nanodevices 286
11.7 Applications and Future Perspective 286
11.8 Conclusion 288
References 289

12 Topological Insulator Thin Films and Heterostructures: Epitaxial Growth, Transport, and Magnetism 295
Anthony Richardella, Abhinav Kandala, and Nitin Samarth
12.1 Introduction 295
12.2 MBE Growth of Topological Insulators 297
12.2.1 HgTe 299
12.2.2 Bi and Sb Chalcogenides 300
12.2.2.1 Bi$_2$Se$_3$ 303
12.2.2.2 Bi$_2$Te$_3$ 303
12.2.2.3 Sb$_2$Te$_3$ 304
12.2.2.4 (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ 305
12.2.2.5 Film Growth, Quality, and Stability 305
12.3 Transport Studies of TI Thin Films 306
12.3.1 Shubnikov–de Haas Oscillations 308
12.3.2 Quantum Corrections to Diffusive Transport in 3D TI Films 309
12.3.3 Mesoscopic Transport in 3D TI Films 310
12.3.4 Hybridization Gaps in Ultrathin 3D TI Films 311
12.4 Topological Insulators Interfaced with Magnetism 313
12.4.1 Bulk Ferromagnetism 313
## 12.4.2 Ferromagnetic Insulator/Topological Insulator Heterostructures

12.5 Conclusions and Future Outlook

Acknowledgments

References

### 13 Weak Antilocalization Effect, Quantum Oscillation, and Superconducting Proximity Effect in 3D Topological Insulators

*Hongtao He and Jiannong Wang*

13.1 Introduction

13.2 Weak Antilocalization in TIs

13.3 Quantum Oscillations in TIs

13.4 Superconducting Proximity Effect in TIs

13.5 Perspective

References

### 14 Quantum Anomalous Hall Effect

*Ke He, Yayu Wang, and Qikun Xue*

14.1 Introduction to the Quantum Anomalous Hall Effect

14.1.1 The Hall Effect and Quantum Hall Effect

14.1.2 The Anomalous Hall Effect and Quantum Anomalous Hall Effect

14.2 Topological insulators and QAHE

14.3 Experimental Procedures for Realizing QAHE

14.3.1 Strategies for Experimental Observation of QAHE

14.3.2 Growth of Ultrathin TI Films by Molecular Beam Epitaxy

14.3.3 Band structure Engineering in (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ ternary alloys

14.3.4 Ferromagnetism in Magnetically Doped Topological Insulators

14.3.5 Electrical Gate Tuning of the AHE

14.4 Experimental Observation of QAHE

14.5 Conclusion and Outlook

References

### 15 Interaction Effects on Transport in Majorana Nanowires

*Reinhold Egger, Alex Zazunov, and Alfredo Levy Yeyati*

15.1 Introduction

15.2 Transport through Majorana Nanowires: General Considerations

15.2.1 Model

15.2.2 Majorana–Meir–Wingreen Formula

15.2.3 Conductance for the Noninteracting $M = 2$ Case

15.3 Majorana Single-Charge Transistor

15.3.1 Charging Energy Contribution

15.3.2 Theoretical Approaches

15.3.3 Master Equation Approach