Contents

List of Contributors xv
Preface xix
Editor in Chief xxii

1 Overview: Affirmation of Nanotechnology between 2000 and 2030 1
Mihail C. Roco
1.1 Introduction 1
1.2 Nanotechnology – A Foundational Megatrend in Science and Engineering 2
1.3 Three Stages for Establishing the New General Purpose Technology 9
1.4 Several Challenges for Nanotechnology Development 15
1.5 About the Return on Investment 16
1.6 Closing Remarks 21
Acknowledgments 22
References 22

2 Nanocarbon Materials in Catalysis 25
Xing Zhang, Xiao Zhang, and Yongye Liang
2.1 Introduction to Nanocarbon Materials 25
2.2 Synthesis and Functionalization of Nanocarbon Materials 26
2.2.1 Synthesis and Functionalization of Carbon Nanotubes 26
2.2.2 Synthesis and Functionalization of Graphene and Graphene Oxide 27
2.2.3 Synthesis and Functionalization of Carbon Nanodots 29
2.2.4 Synthesis and Functionalization of Mesoporous Carbon 29
2.3 Applications of Nanocarbon Materials in Electrocatalysis 31
2.3.1 Oxygen Reduction Reaction 32
2.3.2 Oxygen Evolution Reaction 36
2.3.3 Hydrogen Evolution Reaction 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td>Roles of Nanocarbon Materials in Catalytic CO₂ Reduction Reaction</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>Applications of Nanocarbon Materials in Photocatalysis</td>
<td>47</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Application of Nanocarbon Materials as Photogenerated Charge Acceptors</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Application of Nanocarbon Materials as Electron Shuttle Mediator</td>
<td>48</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Application of Nanocarbon Materials as Cocatalyst for Photocatalysts</td>
<td>50</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Application of Nanocarbon Materials as Active Photocatalyst</td>
<td>51</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Controlling and Characterizing Anisotropic Nanomaterial Dispersion</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Virginia A. Davis and Micah J. Green</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>What Is Dispersion and Why Is It Important?</td>
<td>66</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Factors Affecting Dispersion</td>
<td>73</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Thermodynamic Dissolution of Pristine Nanomaterials</td>
<td>73</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Intermolecular Potential in Dispersions</td>
<td>74</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Functionalization of Nanomaterials</td>
<td>75</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Physical Mixing</td>
<td>77</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Sonication</td>
<td>77</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Solvent Intercalation Methods</td>
<td>78</td>
</tr>
<tr>
<td>3.2.5.3</td>
<td>Shear Mixing Methods</td>
<td>78</td>
</tr>
<tr>
<td>3.3</td>
<td>Characterizing Dispersion State in Fluids</td>
<td>81</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Visualization</td>
<td>81</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>3.3.3</td>
<td>TEM</td>
<td>85</td>
</tr>
<tr>
<td>3.3.4</td>
<td>AFM</td>
<td>85</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Light Scattering</td>
<td>85</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Rheology</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Characterization of Dispersion State in Solidified Materials</td>
<td>88</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Microscopy</td>
<td>89</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Electrical Percolation</td>
<td>89</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Mechanical Property Enhancement</td>
<td>89</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Thermal Property Changes</td>
<td>90</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>91</td>
</tr>
</tbody>
</table>
4 High-Throughput Nanomanufacturing via Spray Processes 101

Gauri Nabar, Matthew Souva, Kil Ho Lee, Souvik De, Jodie Lutkenhaus, Barbara Wyslouzil, and Jessica O. Winter

4.1 Introduction 101
4.2 Flash Nanoprecipitation 104
4.2.1 Overview 104
4.2.2 Importance of Rapid Mixing 105
4.2.3 Mixers Employed in FNP 106
4.2.3.1 Confined Impinging Jet Mixers (CIJMs) 106
4.2.3.2 Multi-Inlet Vortex Mixers (MIVMs) 107
4.2.3.3 Mixer Selection 107
4.2.4 FNP Product Structure 107
4.2.5 Applications of FNP Nanocomposites 108
4.3 Electrospray 108
4.3.1 Overview 108
4.3.2 Single Nozzle Electrospray 109
4.3.2.1 Forces and Modes of Electrospray 109
4.3.2.2 Applications of Single Nozzle Electrospray 110
4.3.3 Coaxial Electrospray 111
4.3.3.1 Configuration 111
4.3.3.2 Applications 112
4.3.4 Future Directions 113
4.4 Liquid-in-Liquid Electrospray 113
4.4.1 Overview 113
4.4.2 Importance of Relative Conductivities of the Dispersed and Continuous Phases 114
4.4.3 Modified Liquid-in-Liquid Electrospray Designs 115
4.4.4 Applications and Future Directions 117
4.5 Spray-Assisted Layer-by-Layer Assembly 117
4.5.1 Overview 117
4.5.2 Influence of Processing Parameters on Film Quality 119
4.5.2.1 Effect of Concentration 120
4.5.2.2 Effect of Spraying Time 120
4.5.2.3 Effect of Spraying Distance 120
4.5.2.4 Effect of Air Pressure 121
4.5.2.5 Effect of Charge Density 121
4.5.2.6 Effect of Rinsing and Blow-Drying 122
4.5.2.7 Effect of Rinsing Solution 122
4.5.3 Applications 122
4.5.4 Future Directions 123
4.6 Conclusion and Future Directions 123

References 123
5 Overview of Nanotechnology in Military and Aerospace Applications 133
Eugene Edwards, Christina Brantley, and Paul B. Ruffin

5.1 Introduction 133
5.2 Implications of Nanotechnology in Military and Aerospace Systems Applications 134
5.3 Nano-Based Microsensor Technology for the Detection of Chemical Agents 135
5.3.1 Surface-Enhanced Raman Spectroscopy 135
5.3.1.1 Design Approach 136
5.3.1.2 Experiment 137
5.3.1.3 Results 138
5.3.2 Voltammetric Techniques 139
5.3.2.1 Design Approach 140
5.3.2.2 Experimental/Test Setup 142
5.3.2.3 Results 143
5.3.3 Functionalized Nanowires – Zinc Oxide 145
5.3.3.1 Design Approach 145
5.3.3.2 Experimental/Test Setup 146
5.3.3.3 Results 146
5.3.4 Functionalized Nanowires – Tin Oxide 147
5.3.4.1 Design Approach 148
5.3.4.2 Prototype Configuration/Testing 148
5.3.4.3 Results 148
5.4 Nanotechnology for Missile Health Monitoring 149
5.4.1 Nanoporous Membrane Sensors 150
5.4.1.1 Design Approach 150
5.4.1.2 Experimental Setup and Prototype Configuration 150
5.4.1.3 Results 152
5.4.2 Multichannel Chip with Single-Walled Carbon Nanotubes Sensor Arrays 154
5.4.2.1 Design Concept 154
5.4.2.2 Experimental Configuration 154
5.4.2.3 Results 155
5.4.3 Optical Spectroscopic Configured Sensing Techniques – Fiber Optics 155
5.4.3.1 Design Concept Spectroscopic Sensing 156
5.4.3.2 Experimental Approach/Aged Propellant Samples 156
5.4.3.3 Results from Absorption Measurements 157
5.5 Nanoenergetics – Missile Propellants 158
5.5.1 Multiwall Carbon Nanotubes 158
5.5.1.1 Design Approach 158
5.5.1.2 Experiment 159
6.4.2.1 Setup and Calibration of Compression Sensor 214
6.4.2.2 Analysis Method 215
6.4.2.3 Char Compressive Strength Results 216
6.4.2.4 Additional Considerations on the Interpretation of the Data 223
6.4.2.5 Concluding Remarks 226
6.5 Technologies Needed to Advance Polymer Nanocomposite Ablative Research 227
6.5.1 Thermophysical Properties Characterization 227
6.5.1.1 Thermal Conductivity 227
6.5.1.2 Thermal Expansion 228
6.5.1.3 Density and Composition 228
6.5.1.4 Microstructure 229
6.5.1.5 Elemental Composition 229
6.5.1.6 Char Yield 229
6.5.1.7 Specific Heat 229
6.5.1.8 Heat of Combustion 230
6.5.1.9 Optical Properties 230
6.5.1.10 Porosity 230
6.5.1.11 Permeability 230
6.5.2 Ablation Modeling 231
6.6 Summary and Conclusion 236
Nomenclature 236
Acronyms 237
Acknowledgments 237
References 238

7 Manufacture of Multiscale Composites 245
David O. Olawale, Micah C. McCravy-Dennis, and Okenwa O. Okoli
7.1 Introduction 245
7.1.1 Multifunctionality of Multiscale Composites 245
7.1.2 Nanomaterials 247
7.2 Nanoconstituents Preparation Processes 249
7.2.1 Functionalization of CNTs 249
7.2.1.1 Chemical Functionalization 249
7.2.1.2 Physical (Noncovalent) Functionalization 250
7.2.2 Dispersion of Carbon Nanotubes 252
7.2.2.1 Ultrasonication 254
7.2.2.2 Calendering Process 255
7.2.2.3 Ball Milling 256
7.2.2.4 Stir and Extrusion 256
7.2.3 Alignment of CNTS 258
7.2.3.1 Ex situ Alignment 258
 Contents

7.2.3.2 Force Field-Induced Alignment of CNTs 259
7.2.3.3 Magnetic Field-Induced Alignment of CNTs 259
7.2.3.4 Electrospinning-Induced Alignment of CNTs 260
7.2.3.5 Liquid Crystalline Phase-induced Alignment of CNTs 261
7.3 Liquid Composites Molding (LCM) Processes for Multiscale Composites Manufacturing 261
7.3.1 Resin Transfer Molding (RTM) 262
7.3.2 Vacuum-Assisted Resin Transfer Molding (VARTM) 263
7.3.3 Resin Film Infusion (RFI) 265
7.3.4 The Resin Infusion under Flexible Tooling (RIFT) and Resin Infusion between Double Flexible Tooling (RIDFT) 266
7.3.5 Autoclave Manufacturing 267
7.3.6 Out-of-Autoclave Manufacturing: Quickset 268
7.3.6.1 Quickstep 268
7.4 Continuous Manufacturing Processes for Multiscale Composites 269
7.4.1 Pultrusion 269
7.4.2 Filament Winding 270
7.5 Challenges and Advances in Multiscale Composites Manufacturing – Environmental, Health, and Safety (E, H, & S) 271
7.5.1 Nanoconstituents Processing Hazards 271
7.5.2 Composite Production and Processing 272
7.5.3 Life Cycle Assessment – Use and Disposal 273
7.6 Modeling and Simulation Tools for Multiscale Composites Manufacture 273
7.6.1 Nanoparticle Modeling 274
7.6.2 Molecular Modeling 274
7.6.3 Simulation 274
7.7 Conclusion 275
References 276

8 Bioinspired Systems 285
Oluwamayowa Adigun, Alexander S. Freer, Laurie Mueller, Christopher Gilpin, Bryan W. Boudouris, and Michael T. Harris
8.1 Introduction and Literature Overview 285
8.2 Electrical Properties of a Single Palladium-Coated Biotemplate 289
8.3 Materials and Methods 290
8.4 Results and Discussion 293
8.5 Conclusion and Outlook 297
Acknowledgments 300
References 300
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Prediction of Carbon Nanotube Buckypaper Mechanical Properties with Integrated Physics-Based and Statistical Models</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Kan Wang, Arda Vanli, Chuck Zhang, and Ben Wang</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>307</td>
</tr>
<tr>
<td>9.2</td>
<td>Manufacturing Process of Buckypaper</td>
<td>310</td>
</tr>
<tr>
<td>9.3</td>
<td>Finite Element-Based Computational Models for Buckypaper Mechanical Property Prediction</td>
<td>313</td>
</tr>
<tr>
<td>9.4</td>
<td>Calibration and Adjustment of FE Models with Statistical Methods</td>
<td>322</td>
</tr>
<tr>
<td>9.5</td>
<td>Summary</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>332</td>
</tr>
<tr>
<td>10</td>
<td>Fabrication and Fatigue of Fiber-Reinforced Polymer Nanocomposites – A Tool for Quality Control</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Daniel C. Davis and Thomas O. Mensah</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>335</td>
</tr>
<tr>
<td>10.2</td>
<td>Materials</td>
<td>336</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Carbon Fabric and Fiber</td>
<td>337</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Glass Fabric and Fibers</td>
<td>337</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Polymer Resin</td>
<td>337</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Carbon Nanotubes</td>
<td>338</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Carbon Nanofibers</td>
<td>339</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Nanoclays</td>
<td>340</td>
</tr>
<tr>
<td>10.3</td>
<td>Composite Fabrication</td>
<td>341</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Hand Layup</td>
<td>341</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Resin Transfer Molding</td>
<td>342</td>
</tr>
<tr>
<td>10.4</td>
<td>Discussion – Fatigue and Fracture</td>
<td>344</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Fatigue and Durability</td>
<td>344</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Carbon Nanotube – Polymer Matrix Composites</td>
<td>347</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Carbon Nanofiber – Polymer Matrix Composites</td>
<td>349</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Nanoclay – Polymer Matrix Composites</td>
<td>354</td>
</tr>
<tr>
<td>10.5</td>
<td>Summary and Conclusion</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>360</td>
</tr>
<tr>
<td>11</td>
<td>Nanoclays: A Review of Their Toxicological Profiles and Risk Assessment Implementation Strategies</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Alixandra Wagner, Rakesh Gupta, and Cerasela Z. Dinu</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>369</td>
</tr>
<tr>
<td>11.2</td>
<td>Nanoclay Structure and Resulting Applications</td>
<td>369</td>
</tr>
<tr>
<td>11.3</td>
<td>Nanoclays in Food Packaging Applications</td>
<td>370</td>
</tr>
</tbody>
</table>
11.4 Possible Toxicity upon Implementation of Nanoclay in Consumer Applications 375
11.4.1 In Vitro Studies Reveal the Potential of Nanoclay to Induce Changes in Cellular Viability 376
11.4.2 Proposed Mechanisms of Toxicity for the In Vitro Cellular Studies 380
11.4.3 In Vivo Evaluation of Nanoclay Toxicity 383
11.5 Conclusion and Outlook 385
Acknowledgments 387
References 388

12 Nanotechnology EHS: Manufacturing and Colloidal Aspects 395
Geoffrey D. Bothun and Vinka Oyanedel-Craver
12.1 Introduction 395
12.1.1 Challenges 397
12.1.2 Recent Initiatives and Reviews 399
12.2 Colloidal Properties and Environmental Transformations 400
12.3 Assessing Nano EHS 402
12.3.1 Example: Silver Nanoparticles (AgNPs) 407
12.3.2 Role of Manufacturing 407
Summary 409
Acknowledgments 409
References 409

Index 417