CONTENTS

Contributors List xxxix
Editors' Introduction xliii
Contents of the DVD, Including Instructional Videos lvii

A Technical Definition of Mixing 1
Joëlle Aubin and Suzanne M. Kresta

Range of Industrial Mixing Applications 2
Three Dimensions of Segregation: A Technical Definition of Mixing 3
Identifying Mixing Problems: Defining the Critical Scales and Process Objectives 5
Notation 9
References 9

1a Residence Time Distributions 11
E. Bruce Nauman

1a-1 Introduction 12
1a-2 Measurements and Distribution Functions
1a-3 Residence Time Models of Flow Systems
 1a-3.1 Ideal Flow Systems
 1a-3.2 Hydrodynamic Models
 1a-3.3 Recycle Models
1a-4 Uses of Residence Time Distributions
 1a-4.1 Diagnosis of Pathological Behavior
 1a-4.2 Damping of Feed Fluctuations
 1a-4.3 Yield Prediction
 1a-4.4 Use with Computational Fluid Dynamic Calculations
1a-5 Extensions of Residence Time Theory
 Nomenclature
 References
CONTENTS

1b Mean Age Theory for Quantitative Mixing Analysis 15

Minye Liu

1b-1 Introduction 15
1b-2 Age and Time in a Flow System 16
1b-3 Governing Equations of Mean Age and Higher Moments 17
1b-4 Computation of Mean Age 20
 1b-4.1 Validations of Numerical Solutions 20
 1b-4.2 Spatial Distribution of Mean Age in Mixing Devices 21
1b-5 Relations of Mean Age and Residence Time Distribution 25
1b-6 Variances and the Degree of Mixing 27
 1b-6.1 Variance of Residence Time Distribution 27
 1b-6.2 Variances of Age 28
 1b-6.3 Degree of Mixing 28
 1b-6.4 Spatial Nonuniformity in CFSTRs 30
1b-7 Mean Age and Concentration in a CFSTR 31
 1b-7.1 Time History of Tracer Concentration 31
 1b-7.2 Mixing Time in CFSTRs 33
1b-8 Probability Distribution Function of Mean Age 34
 1b-8.1 Definition 34
 1b-8.2 Scaling and Blend Time Estimation 35
1b-9 Future Development of Mean Age Theory 39

Nomenclature 39

Greek Letters 40

References 41

2a Turbulence in Mixing Applications 43

Suzanne M. Kresta and Robert S. Brodkey

2a-1 Introduction 44
2a-2 Background
 2a-2.1 Definitions
 2a-2.2 Length and Time Scales in the Context of Turbulent Mixing
 2a-2.3 Relative Rates of Mixing and Reaction: The Damkoehler Number
2a-3 Classical Measures of Turbulence
 2a-3.1 Phenomenological Description of Turbulence
 2a-3.2 Turbulence Spectrum: Quantifying Length Scales
 2a-3.3 Scaling Arguments and the Energy Budget: Relating Turbulence Characteristics to Operating Variables
CONTENTS

2a-4 Dynamics and Averages: Reducing the Dimensionality of the Problem
 2a-4.1 Time Averaging of the Flow Field: The Eulerian Approach
 2a-4.2 Useful Approximations
 2a-4.3 Tracking of Fluid Particles: The Lagrangian Approach
 2a-4.4 Experimental Measurements
2a-5 Modeling the Turbulent Transport
 2a-5.1 Time-Resolved Simulations: The Full Solution
 2a-5.2 Reynolds Averaged Navier–Stokes Equations: An Engineering Approximation
 2a-5.3 Limitations of Current Modeling: Coupling between Velocity, Concentration, Temperature, and Reaction Kinetics
2a-6 What Have We Learned?

Nomenclature
References

2b Update to Turbulence in Mixing Applications

Márcio B. Machado and Suzanne M. Kresta

2b-1 Introduction
2b-2 The Velocity Field and Turbulence
 2b-2.1 Circulation and Macromixing
 2b-2.2 Fully Turbulent Limits and the Scaling of Turbulence
2b-3 Spectrum of Turbulent Length Scales: Injection of Scalar (Either Reagent or Additive) and the Macro-, Meso-, and Microscales of Mixing
 2b-3.1 Mesoscale Mixing
 2b-3.2 New Experimental Results
 2b-3.3 Summary
2b-4 Turbulence and Mixing of Solids, Liquids, and Gases
2b-5 Specifying Mixing Requirements for a Process
 2b-5.1 Mixing Test Cells
2b-6 Conclusions
Notation
 Roman Characters
 Greek Characters
References
CONTENTS

3a Laminar Mixing: A Dynamical Systems Approach 85
 Edit S. Szalai, Mario M. Alvarez, and Fernando J. Muzzio

 3a-1 Introduction 86
 3a-2 Background
 3a-2.1 Simple Mixing Mechanism: Flow Reorientation
 3a-2.2 Distinctive Properties of Chaotic Systems
 3a-2.3 Chaos and Mixing: Some Key Contributions
 3a-3 How to Evaluate Mixing Performance
 3a-3.1 Traditional Approach and Its Problems
 3a-3.2 Measuring Microstructural Properties of a Mixture
 3a-3.3 Study of Microstructure: A Brief Review
 3a-4 Physics of Chaotic Flows Applied to Laminar Mixing
 3a-4.1 Simple Model Chaotic System: The Sine Flow
 3a-4.2 Evolution of Material Lines: The Stretching Field
 3a-4.3 Short-Term Mixing Structures
 3a-4.4 Direct Simulation of Material Interfaces
 3a-4.5 Asymptotic Directionality in Chaotic Flows
 3a-4.6 Rates of Interface Growth
 3a-4.7 Intermaterial Area Density Calculation
 3a-4.8 Calculation of Striation Thickness Distributions
 3a-4.9 Prediction of Striation Thickness Distributions
 3a-5 Applications to Physically Realizable Chaotic Flows
 3a-5.1 Common 3D Chaotic System: The Kenics Static Mixer
 3a-5.2 Short-Term Mixing Structures
 3a-5.3 Asymptotic Directionality in the Kenics Mixer
 3a-5.4 Computation of the Stretching Field
 3a-5.5 Rates of Interface Growth
 3a-5.6 Intermaterial Area Density Calculation
 3a-5.7 Prediction of Striation Thickness Distributions in
 Realistic 3D Systems
 3a-6 Reactive Chaotic Flows
 3a-6.1 Reactions in 3D Laminar Systems
 3a-7 Summary
 3a-8 Conclusions
 Nomenclature
 References

3b Microstructure, Rheology, and Processing of Complex Fluids 87
 Patrick T. Spicer and James F. Gilchrist

 3b-1 Introduction 87
 3b-2 Literature Analysis—Mixing of Complex Fluids 90
CONTENTS

3b-3 Common Complex Fluid Rheology Classes and Their Effects 92
3b-3.1 Shear-Thinning Fluids 93
3b-3.2 Yield Stress Fluids 95
3b-3.3 Shear-Thickening Fluids 101
3b-3.4 Time-Dependent Fluids 103
3b-4 Conclusions 110

Nomenclature 110
Greek Symbols 111
References 111

4 Experimental Methods

Part A: Measuring Tools and Techniques for Mixing and Flow Visualization Studies 115

David A. R. Brown, Pip N. Jones, and John C. Middleton

4-1 Introduction 117
4-1.1 Preliminary Considerations

4-2 Mixing Laboratory
4-2.1 Safety
4-2.2 Fluids
4-2.3 Scale of Operation 154
4-2.4 Basic Instrumentation Considerations
4-2.5 Materials of Construction
4-2.6 Lab Scale Mixing in Stirred Tanks
4-2.7 Lab Scale Mixing in Pipelines

4-3 Power Draw or Torque Measurement
4-3.1 Strain Gauges
4-3.2 Air Bearing with Load Cell
4-3.3 Shaft Power Measurement Using a Modified Rheometer
4-3.4 Measurement of Motor Power

4-4 Single-Phase Blending
4-4.1 Flow Visualization
4-4.2 Selection of Probe Location
4-4.3 Approximate Mixing Time Measurement with Colorimetric Methods
4-4.4 Quantitative Measurement of the Mixing Time
4-4.5 RTD for CSTR
4-4.6 Local Mixedness

4-5 Solid–Liquid Mixing
4-5.1 Solids Distribution
4-5.2 Solids Suspension: Measurement of N/js
CONTENTS

4-6 Liquid–Liquid Dispersion
 4-6.1 Cleaning a Liquid–Liquid System
 4-6.2 Measuring Interfacial Tension
 4-6.3 N_{ld} for Liquid–Liquid Systems
 4-6.4 Distribution of the Dispersed Phase
 4-6.5 Phase Inversion
 4-6.6 Droplet Sizing

4-7 Gas–Liquid Mixing
 4-7.1 Detecting the Gassing Regime
 4-7.2 Cavity Type
 4-7.3 Power Measurement
 4-7.4 Gas Volume Fraction (Hold-up)
 4-7.5 Volumetric Mass Transfer Coefficient, k_{La}
 4-7.6 Bubble Size and Specific Interfacial Area
 4-7.7 Coalescence
 4-7.8 Gas-Phase RTD
 4-7.9 Liquid-Phase RTD
 4-7.10 Liquid-Phase Blending Time
 4-7.11 Surface Aeration

4-8 Other Techniques
 4-8.1 Tomography

Part B: Fundamental Flow Measurement

4-9 Scope of Fundamental Flow Measurement Techniques
 4-9.1 Point versus Full Field Velocity Measurement Techniques: Advantages and Limitations
 4-9.2 Nonintrusive Measurement Techniques

4-10 Laser Doppler Anemometry
 4-10.1 Characteristics of LDA
 4-10.2 Principles of LDA
 4-10.3 LDA Implementation
 4-10.4 Making Measurements
 4-10.5 LDA Applications in Mixing

4-11 Phase Doppler Anemometry
 4-11.1 Principles and Equations for PDA
 4-11.2 Sensitivity and Range of PDA
 4-11.3 Implementation of PDA

4-12 Particle Image Velocimetry
 4-12.1 Principles of PIV
 4-12.2 Image Processing
 4-12.3 Implementation of PIV
 4-12.4 PIV Data Processing
CONTENTS

4.12.5 Stereoscopic (3D) PIV
4.12.6 PIV Applications in Mixing
Nomenclature
References

5a Computational Fluid Mixing 119
Elizabeth Marden Marshall and André Bakker

5a-1 Introduction 120
5a-2 Computational Fluid Dynamics
 5a-2.1 Conservation Equations
 5a-2.2 Auxiliary Models
5a-3 Numerical Methods
 5a-3.1 Discretization of the Domain: Grid Generation
 5a-3.2 Discretization of the Equations
 5a-3.3 Solution Methods
 5a-3.4 Parallel Processing
5a-4 Stirred Tank Modeling Using Experimental Data
 5a-4.1 Impeller Modeling with Velocity Data
 5a-4.2 Using Experimental Data
 5a-4.3 Treatment of Baffles in 2D Simulations
 5a-4.4 Combining the Velocity Data Model with Other Physical Models
5a-5 Stirred Tank Modeling Using the Actual Impeller Geometry
 5a-5.1 Rotating Frame Model
 5a-5.2 Multiple Reference Frames Model
 5a-5.3 Sliding Mesh Model
 5a-5.4 Snapshot Model
 5a-5.5 Combining the Geometric Impeller Models with Other Physical Models
5a-6 Evaluating Mixing from Flow Field Results
 5a-6.1 Graphics of the Solution Domain
 5a-6.2 Graphics of the Flow Field Solution
 5a-6.3 Other Useful Solution Variables
 5a-6.4 Mixing Parameters
5a-7 Applications
 5a-7.1 Blending in a Stirred Tank Reactor
 5a-7.2 Chemical Reaction in a Stirred Tank
 5a-7.3 Solids Suspension Vessel
 5a-7.4 Fermenter
 5a-7.5 Industrial Paper Pulp Chests
 5a-7.6 Twin-Screw Extruders
 5a-7.7 Intermeshing Impellers
CONTENTS

5a-7.8 Kenics Static Mixer
5a-7.9 HEV Static Mixer
5a-7.10 LDPE Autoclave Reactor
5a-7.11 Impeller Design Optimization
5a-7.12 Helical Ribbon Impeller
5a-7.13 Stirred Tank Modeling Using LES

5a-8 Closing Remarks
5a-8.1 Additional Resources
5a-8.2 Hardware Needs
5a-8.3 Learning Curve
5a-8.4 Common Pitfalls and Benefits

Acknowledgments
Nomenclature
References

5b CFD Modeling of Stirred Tank Reactors

Minye Liu

5b-1 Numerical Issues
5b-1.1 Mesh Types
5b-1.2 Effect of Mesh Size on Mean Flow and Turbulent Diffusion
5b-1.3 Discretization Schemes
5b-1.4 Time Integration
5b-1.5 Convergence
5b-1.6 Treatment of Impellers
5b-1.7 Numerical Diffusion

5b-2 Turbulence Models
5b-2.1 The RANS Models
5b-2.2 The LES Method
5b-2.3 The DES Method
5b-2.4 The DNS Method
5b-2.5 Laminar and Transitional Flows

5b-3 Quantitative Predictions
5b-3.1 Power Number
5b-3.2 Flow Number Calculation
5b-3.3 Blend Time Calculation

5b-4 Modeling Other Physics
5b-4.1 Solid–Liquid Flows
5b-4.2 Gas–Liquid and Liquid–Liquid Flows
5b-4.3 Flows with Other Physics and Chemistry

Nomenclature
Greek Letters
References
CONTENTS

6a **Mechanically Stirred Vessels**

Ramesh R. Hemrajani and Gary B. Tatterson

- 6a-1 Introduction 150
- 6a-2 Key Design Parameters
 - 6a-2.1 Geometry
 - 6a-2.2 Impeller Selection
 - 6a-2.3 Impeller Characteristics: Pumping and Power
- 6a-3 Flow Characteristics
 - 6a-3.1 Flow Patterns
 - 6a-3.2 Shear
 - 6a-3.3 Impeller Clearance and Spacing
 - 6a-3.4 Multistage Agitated Tanks
 - 6a-3.5 Feed Pipe Backmixing
 - 6a-3.6 Bottom Drainage Port
- 6a-4 Scale-up
- 6a-5 Performance Characteristics and Ranges of Application
 - 6a-5.1 Liquid Blending
 - 6a-5.2 Solids Suspension
 - 6a-5.3 Immiscible Liquid–Liquid Mixing
 - 6a-5.4 Gas–Liquid Dispersion
- 6a-6 Laminar Mixing in Mechanically Stirred Vessels
 - 6a-6.1 Close-Clearance Impellers

Nomenclature
References

6b **Flow Patterns and Mixing**

Suzanne M. Kresta and David S. Dickey

- 6b-1 Introduction 153
- 6b-2 Circulation Patterns
 - 6b-2.1 Base Case: Down-Pumping Pitched-Blade Turbine—(PBTD, D = T/3 and C = T/3) 157
 - 6b-2.2 Baffles 157
 - 6b-2.3 Changing the Impeller Type 158
 - 6b-2.4 Impeller Diameter 160
 - 6b-2.5 Off-Bottom Clearance 162
 - 6b-2.6 Bottom Shape 166
 - 6b-2.7 Liquid Level 168
 - 6b-2.8 Baffle Options 170
 - 6b-2.9 Viscosity 173
 - 6b-2.10 Off-Set and Angled Shafts 175
 - 6b-2.11 Continuous Flow 178
- 6b-3 Coupling the Velocity Field with Applications 178
 - 6b-3.1 Solids Suspension 179
CONTENTS

6b-3.2 Gas Dispersion 181
6b-3.3 Air Entrainment, Liquid Drawdown, and Drawdown of Floating Solids 182
6b-3.4 Reactor Design 184
6b-3.5 Summary 185
Nomenclature 185
Greek Symbols 185
References 186

6c Vessel Heads: Depths, Volumes, and Areas 189
David S. Dickey, Daniel R. Crookston, and Reid B. Crookston
6c-1 Head Depth 190
6c-2 Head Volume 193
6c-3 Head Area 194
6c-4 Dimensionless Coefficients for Torispherical Heads 195
6c-5 Calculations for Conical Bottoms 197
6c-6 Other Types of Bottoms 199
Nomenclature 199
Dimensional Variables and Parameters 199
Dimensionless Variables and Parameters 199
Dimensionless Greek Symbols 200
References 200

7a Mixing in Pipelines 201
Arthur W. Etchells III and Chris F. Meyer
7a-1 Introduction 202
7a-2 Fluid Dynamic Modes: Flow Regimes
7a-2.1 Reynolds Experiments in Pipeline Flow
7a-2.2 Reynolds Number and Friction Factor
7a-3 Overview of Pipeline Device Options by Flow Regime
7a-3.1 Turbulent Single-Phase Flow
7a-3.2 Turbulent Multiphase Flow
7a-3.3 Laminar Flow
7a-4 Applications
7a-4.1 Process Results
7a-4.2 Pipeline Mixing Applications
7a-4.3 Applications Engineering
7a-4.4 Sample of Industrial Applications
7a-5 Blending and Radial Mixing in Pipeline Flow
7a-5.1 Definition of Desired Process Result
7a-5.2 Importance of Physical Properties
7a-6 Tee Mixers
CONTENTS

7a-7 Static or Motionless Mixing Equipment
 7a-7.1 Types of Static Mixers
 7a-7.2 Static Mixer Design Options by Flow Regime and Application
 7a-7.3 Selecting the Correct Static Mixer Design

7a-8 Static Mixer Design Fundamentals
 7a-8.1 Pressure Drop
 7a-8.2 Blending Correlations for Laminar and Turbulent Flow
 7a-8.3 Which In-line Mixer to Use
 7a-8.4 Examples

7a-9 Multiphase Flow in Motionless Mixers and Pipes
 7a-9.1 Physical Properties and Drop Size
 7a-9.2 Dispersion of Particulate Solids: Laminar Flow
 7a-9.3 Pressure Drop in Multiphase Flow
 7a-9.4 Dispersion versus Blending
 7a-9.5 Examples
 7a-10 Transitional Flow

7a-11 Motionless Mixers: Other Considerations
 7a-11.1 Mixer Orientation
 7a-11.2 Tailpipe/Downstream Effects
 7a-11.3 Effect of Inlet Position
 7a-11.4 Scale-up for Motionless Mixers

7a-12 In-line Mechanical Mixers
 7a-12.1 Rotor–Stator
 7a-12.2 Extruders

7a-13 Other Process Results
 7a-13.1 Heat Transfer
 7a-13.2 Mass Transfer

7a-14 Summary and Future Developments
 Acknowledgments
 Nomenclature
 References

7b Update to Mixing in Pipelines
 Thomas A. Simpson, Michael K. Dawson, and Arthur W. Etchells III

 7b-1 Introduction 205
 7b-2 Use of CFD with Static Mixers 206
 7b-3 Recent Developments in Single-Phase Blending 207
 7b-3.1 Laminar Blending Updates 207
 7b-3.2 Transitional Blending Updates 209
 7b-3.3 Turbulent Blending Updates 210
CONTENTS

8-1.2 Applications of Rotor–Stator Mixers 256
8-1.3 Summary of Current Knowledge 257

8-2 Geometry and Design Configurations
8-2.1 Colloid Mills and Toothed Devices
8-2.2 Radial Discharge Impeller
8-2.3 Axial Discharge Impeller
8-2.4 Mode of Operation

8-3 Hydrodynamics of Rotor–Stator Mixers
8-3.1 Power Draw in Batch Mixers
8-3.2 Pumping Capacity
8-3.3 Velocity Field Information
8-3.4 Summary and Guidelines

8-4 Process Scale-up and Design Considerations
8-4.1 Liquid–Liquid Dispersion
8-4.2 Solids and Powder Dispersion Operations
8-4.3 Chemical Reactions
8-4.4 Additional Considerations for Scale-up and Comparative Sizing of Rotor–Stator Mixers
8-5 Mechanical Design Considerations
8-6 Rotor–Stator Mixing Equipment Suppliers

References

9a Blending of Miscible Liquids 259
Richard K. Grenville and Alvin W. Nienow

9a-1 Introduction 260

9a-2 Blending of Newtonian Fluids in the Turbulent and Transitional Regimes
9a-2.1 Literature Survey
9a-2.2 Development of the Design Correlation
9a-2.3 Use of the Design Correlation
9a-2.4 Impeller Efficiency
9a-2.5 Shaft Torque, Critical Speed, and Retrofitting
9a-2.6 Nonstandard Geometries: Aspect Ratios Greater Than 1 and Multiple Impellers
9a-2.7 Other Degrees of Homogeneity
9a-2.8 Examples

9a-3 Blending of Non-Newtonian, Shear-Thinning Fluids in the Turbulent and Transitional Regimes
9a-3.1 Shear-Thinning Fluids
9a-3.2 Literature Survey
CONTENTS

9a-3.3 Modifying the Newtonian Relationships for Shear-Thinning Fluids
9a-3.4 Use of the Design Correlation
9a-3.5 Impeller Efficiency
9a-3.6 Cavern Formation and Size in Yield Stress Fluids
9a-3.7 Examples
9a-4 Blending in the Laminar Regime
9a-4.1 Identifying the Operating Regime for Viscous Blending
9a-4.2 Impeller Selection
9a-4.3 Estimation of Power Draw
9a-4.4 Estimation of Blend Time
9a-4.5 Effect of Shear-Thinning Behavior
9a-4.6 Design Example
9a-5 Jet Mixing in Tanks
9a-5.1 Literature Review
9a-5.2 Jet Mixer Design Method
9a-5.3 Jet Mixer Design Steps
9a-5.4 Design Examples

Nomenclature
References

9b Laminar Mixing Processes in Stirred Vessels

Philippe A. Tanguy, Louis Fradette, Gabriel Ascanio, and Ryuichi Yatomi

9b-1 Introduction
9b-2 Laminar Mixing Background
9b-3 Rheologically Complex Fluids
9b-4 Heat Effects
9b-5 Laminar Mixing Equipment
9b-6 Key Design Parameters
9b-6.1 Determination of the Power Number by Dimensional Analysis
9b-7 Power Number and Power Constant
9b-7.1 Newtonian Power Analysis
9b-7.2 Non-Newtonian Power Analysis
9b-8 Experimental Techniques to Determine Blend Time
9b-9 Mixing Efficiency
9b-10 Characterization of the Mixing Flow Field
9b-10.1 Experimental Characterization
9b-10.2 Computational Fluid Dynamics Characterization
9b-11 Hydrodynamic Characterization of Laminar Blending
9b-11.1 Identifying the Operating Regime for Laminar Blending

261
CONTENTS

9b-11.2 Open Turbines and Close-Clearance Impellers 303
9b-11.3 Coaxial Systems 312
9b-11.4 Mixers with Multiple Off-Centered Shafts 314
9b-11.5 Planetary Mixers 315
9b-11.6 When to Use Baffles 315
9b-11.7 Design Example 316

9b-12 Application of Chaos in Mixing 317
 9b-12.1 Impeller Design 317
 9b-12.2 Operating Modes 319
 9b-12.3 Impeller Position 325
 9b-12.4 Impeller Speed 327

9b-13 Selecting an Appropriate Geometry for Generic Applications 328
 9b-13.1 Blending 328
 9b-13.2 Liquid–Liquid Dispersion and Emulsification 329
 9b-13.3 Solid–Liquid Dispersion 330
 9b-13.4 Gas–Liquid Dispersion 331
 9b-13.5 Aeration Technologies 333
 9b-13.6 Fluid Level Changes 334
 9b-13.7 Caverns 335

9b-14 Heat and Mass Transfer in the Laminar Mixing 336

9b-15 Industrial Mixing Process Requirements 338

9b-16 Scale-up Rules in the Laminar Regime 340
 9b-16.1 Scale-up Based on Constant Speed 340
 9b-16.2 Scale-up Based on Constant Heat Balance 341
 9b-16.3 Scale-up Based on Constant Mass Balance 341

9b-17 Mixer Troubleshooting and Engineering Calculations 342
 9b-17.1 Adhesion 342
 9b-17.2 Change of Re upon Change of Scale 342
 9b-17.3 Shear Heating Issue 343
 9b-17.4 Significant Viscosity Change 344
 9b-17.5 Miscible Liquid–Liquid Mixing with Excessive Different Viscosity 344
 9b-17.6 Example of Industrial Calculation 346

9b-18 Concluding Remarks 347

Acknowledgments 348
References 348

10 Solid–Liquid Mixing 357

10-1 Introduction and Scope 358
 10-1.1 Finding Your Way through This Chapter 358
CONTENTS

10-1 Key Solid–Liquid Mixing Process Results

10-1.2 Key Solid–Liquid Mixing Process Results 359
10-1.3 Solid–Liquid Unit Operations 359
10-1.4 Process Considerations for Solid–Liquid Mixing Operations 362
10-1.5 Effect of Solids on Processing 363

10-2 Solid and Liquid Physical Characteristics 364

10-2.1 Particle Size, Distribution, and Shape 364
10-2.2 Solids Concentration 366
10-2.3 Liquid and Solid Density 368
10-2.4 Liquid Viscosity 368
10-2.5 Settling Rates, Drag Coefficients, Correlations, and Modeling 368
10-2.6 Wettability 369
10-2.7 Stickiness 370

10-3 Agitation of Sinking or Settling Solids 371

10-3.1 Mechanisms of Suspension 371
10-3.2 Relevant Dimensionless Numbers 372
10-3.3 Degrees of Suspension 373
10-3.4 The Just-Suspended Speed, \(N_{js} \) (R. K. Grenville—and D. A. R. Brown) 375
10-3.5 Solids Distribution 385
10-3.6 Effects of Material Properties on Suspension and Distribution 390
10-3.7 Effect of Mixer Geometry 395
10-3.8 Solid Suspension and Distribution in the Presence of Gas 411
10-3.9 Continuous Flow and Semibatch Operation 412
10-3.10 Summary of Design Recommendations and Scale-up Advice 414

10-4 Incorporation and Dispersion of Floating Solids—(N. G. Özcan-Taşkin) 416

10-4.1 Design Considerations 416
10-4.2 Mechanisms of Drawdown 417
10-4.3 Effect of Particle Concentration 419
10-4.4 Effect of Impeller Type, Pumping Mode, and Diameter 419
10-4.5 Effect of Impeller Submergence and Liquid Height 421
10-4.6 Effect of Number of Baffles 421
10-4.7 Scale-up 421
10-4.8 Drawdown of Fine Particles 423
10-4.9 Other Devices Used for Particle Incorporation 423

10-5 Attrition and Particle Damage 425

10-5.1 Summary 425
10-5.2 Particle Size Reduction in Stirred Tanks and Similar Equipment 425
CONTENTS

10-5.3 Nature of Particulates 426
10-5.4 Mode of Breakage 426
10-5.5 Location of Breakage in Vessel and Concentration Effects 426
10-5.6 Estimating Strengths—General Concepts 428
10-5.7 General Observations 429
10-5.8 Testing Analysis 429
10-5.9 Damage in Biological Systems 429
10-5.10 Preventing Attrition 430

10-6 Solids Suspension and Distribution Using Liquid Jets 430

10-7 Mass Transfer 431
10-7.1 Mass Transfer Regimes in Mechanically Agitated Solid–Liquid Systems 432
10-7.2 Effect of Impeller Speed on Solid–Liquid Mass Transfer 435
10-7.3 Correlations for the Solid–Liquid Mass Transfer, k_{SL} 436
10-7.4 Calculation of Solid–Liquid Mass Transfer Coefficient 437

10-8 Lab and Pilot-Scale Testing 440

Nomenclature 441
Dimensional Variables and Parameters 441
Dimensionless Parameters 442
Greek Symbols 443

References 443

11 Gas–Liquid Mixing in Turbulent Systems 451
John C. Middleton and John M. Smith

11-1 Introduction 452
11-1.1 New Approaches and New Developments 453
11-1.2 Scope of the Chapter 453
11-1.3 Gas-Liquid Mixing Process Objectives and Mechanisms 454

11-2 Selection and Configuration of Gas–Liquid Equipment
11-2.1 Sparged Systems
11-2.2 Self-Inducers
11-2.3 Recommendations for Agitated Vessels

11-3 Flow Patterns and Operating Regimes
11-3.1 Stirred Vessels: Gas Flow Patterns
11-3.2 Stirred Vessels: Liquid Mixing Time

11-4 Power
11-4.1 Static Mixers
11-4.2 Gassed Agitated Vessels, Nonboiling
CONTENTS

11-4.3 Agitated Vessels, Boiling, Nongassed
11-4.4 Agitated Vessels, Hot Gassed Systems
11-4.5 Prediction of Power by CFD

11-5 Gas Hold-up or Retained Gas Fraction
11-5.1 In-line Mixers
11-5.2 (Cold) Agitated Vessels, Nonboiling
11-5.3 Agitated Vessels, Boiling (Nongassed)
11-5.4 Hold-up in Hot Sparged Reactors

11-6 Gas–Liquid Mass Transfer
11-6.1 Agitated Vessels
11-6.2 In-line Mixers
11-6.3 Gas–Liquid Mass Transfer with Reaction

11-7 Bubble Size
11-8 Consequences of Scale-up
Nomenclature
References

12 Immiscible Liquid–Liquid Systems

Douglas E. Leng and Richard V. Calabrese

12-1 Introduction
12-1.1 Definition of Liquid–Liquid Systems
12-1.2 Practical Relevance
12-1.3 Fundamentals
12-1.4 Process Complexities in Scale-up
12-1.5 Classification by Flow Regime and Liquid Concentration
12-1.6 Scope and Approach

12-2 Liquid–Liquid Dispersion
12-2.1 Introduction
12-2.2 Breakup Mechanism and Daughter Drop Production in Laminar Flow
12-2.3 Drop Dispersion in Turbulent Flow
12-2.4 Time to Equilibrium and Transient Drop Size in Turbulent Flow
12-2.5 Summary

12-3 Drop Coalescence
12-3.1 Introduction
12-3.2 Detailed Studies for Single or Colliding Drops
12-3.3 Coalescence Frequency in Turbulent Flow
12-3.4 Conclusions, Summary, and State of Knowledge

12-4 Population Balances
12-4.1 Introduction
12-4.2 History and Literature
12-4.3 Population Balance Equations
12-4.4 Application of PBEs to Liquid–Liquid Systems
12-4.5 Prospects and Limitations

12-5 More Concentrated Systems
12-5.1 Introduction
12-5.2 Differences from Low Concentration Systems
12-5.3 Viscous Emulsions
12-5.4 Phase Inversion

12-6 Other Considerations
12-6.1 Introduction
12-6.2 Suspension of Drops
12-6.3 Interrelationship between Suspension, Dispersion, and Coalescence
12-6.4 Practical Aspects of Dispersion Formation
12-6.5 Surfactants and Suspending Agents
12-6.6 Oswald Ripening
12-6.7 Heat and Mass Transfer
12-6.8 Presence of a Solid Phase
12-6.9 Effect of a Gas Phase

12-7 Equipment Selection for Liquid–Liquid Operations
12-7.1 Introduction
12-7.2 Impeller Selection and Vessel Design
12-7.3 Power Requirements
12-7.4 Other Considerations
12-7.5 Recommendations

12-8 Scale-up of Liquid–Liquid Systems
12-8.1 Introduction
12-8.2 Scale-up Rules for Dilute Systems
12-8.3 Scale-up of Concentrated, Noncoalescing Dispersions
12-8.4 Scale-up of Coalescing Systems of All Concentrations
12-8.5 Dispersion Time
12-8.6 Design Criteria and Guidelines

12-9 Industrial Applications
12-9.1 Introduction
12-9.2 Industrial Applications
12-9.3 Summary

Nomenclature
References

13a Mixing and Chemical Reactions

Gary K. Patterson, Edward L. Paul, Suzanne M. Kresta, and Arthur W. Etchells III

13a-1 Introduction
CONTENTS

13a-1.1 How Mixing Can Cause Problems 468
13a-1.2 Reaction Schemes of Interest 469
13a-1.3 Relating Mixing and Reaction Time Scales: The Mixing Damköhler Number 472
13a-1.4 Definitions

13a-2 Principles of Reactor Design for Mixing-Sensitive Systems
13a-2.1 Mixing Time Scales: Calculation of the Damköhler Number
13a-2.2 How Mixing Affects Reaction in Common Reactor Geometries
13a-2.3 Mixing Issues Associated with Batch, Semibatch, and Continuous Operation
13a-2.4 Effects of Feed Point, Feed Injection Velocity, and Diameter
13a-2.5 Mixing-Sensitive Homogeneous Reactions
13a-2.6 Simple Guidelines

13a-3 Mixing and Transport Effects in Heterogeneous ChemicalReactors
13a-3.1 Classification of Reactivity in Heterogeneous Reactions
13a-3.2 Homogeneous versus Heterogeneous Selectivity
13a-3.3 Heterogeneous Reactions with Parallel Homogeneous Reactions
13a-3.4 Gas Sparged Reactors
13a-3.5 Liquid–Liquid Reactions
13a-3.6 Liquid–Solid Reactions

13a-4 Scale-up and Scale-down of Mixing-Sensitive Systems
13a-4.1 General Mixing Considerations
13a-4.2 Scale-up of Two-Phase Reactions
13a-4.3 Scale-up Protocols

13a-5 Simulation of Mixing and Chemical Reaction
13a-5.1 General Balance Equations
13a-5.2 Closure Equations for the Correlation Terms in the Balance Equations
13a-5.3 Assumed Turbulent Plug Flow with Simplified Closure
13a-5.4 Blending or Mesomixing Control of Turbulently Mixed Chemical Reactions
13a-5.5 Lamellar Mixing Simulation Using the Engulfment Model
13a-5.6 Monte Carlo Coalescence–Dispersion Simulation of Mixing
13a-5.7 Paired-Interaction Closure for Multiple Chemical Reactions
CONTENTS

13a-5.8 Closure Using β-PFD Simulation of Mixing
13a-5.9 Simulation of Stirred Reactors with Highly Exothermic Reactions
13a-5.10 Comments on the Use of Simulation for Scale-up and Reactor Performance Studies

13a-6 Conclusions
Nomenclature
References

13b Scale-up Using the Bourne Protocol: Reactive Crystallization and Mixing Example 479
Aaron Sarafina and Cheryl I. Teich

13b-1 Example: Redesigning an Uncontrolled Precipitation to a Reactive Crystallization
Goal 479
Issue 479
References 479

14a Heat Transfer 491
W. Roy Penney and Victor A. Atiemo-Obeng

14a-1 Introduction 492
14a-2 Fundamentals
14a-3 Most Cost-Effective Heat Transfer Geometry
 14a-3.1 Mechanical Agitators
 14a-3.2 Gas Sparging
 14a-3.3 Vessel Internals
14a-4 Heat Transfer Coefficient Correlations
 14a-4.1 Correlations for the Vessel Wall
 14a-4.2 Correlations for the Bottom Head
 14a-4.3 Correlations for Helical Coils
 14a-4.4 Correlations for Vertical Baffle Coils
 14a-4.5 Correlations for Plate Coils
 14a-4.6 Correlations for Anchors and Helical Ribbons
14a-5 Examples
Nomenclature
References

14b Heat Transfer In Stirred Tanks—Update 493
Jose Roberto Nunez

14b-1 Introduction 493
 14b-1.1 Overall Heat Transfer Coefficient 493
CONTENTS

14b-2 Consideration of Heat Transfer Surfaces used in Mixing Systems 496
 14b-2.1 Correlations for Conventional and Spiral-Baffle Annular Jackets 502
 14b-2.2 Correlations for Half-Pipe and Dimple Jackets 504
14b-3 Heating and Cooling of Liquids 506
 14b-3.1 Heating: Inner Coils or Jacketed Vessel with an Isothermal Medium 507
 14b-3.2 Cooling: Inner Coils or Jacketed Vessel with an Isothermal Medium 508
 14b-3.3 Heating: Inner Coils or Jacketed Vessel with Nonisothermal Medium 508
 14b-3.4 Cooling: Inner Coils or Jacketed Vessel with Nonisothermal Medium 509
 14b-3.5 External Heat Exchanger, Isothermal Heating Medium 510
 14b-3.6 External Heat Exchanger, Isothermal Cooling Medium 511
14b-4 Summary of Proposed Equations Used in Heat Transfer for Stirred Tanks 512
 14b-4.1 Correcting for the Viscosity 512
 14b-4.2 Use of Compact Heat Exchangers 517
 14b-4.3 Cooling, a Real Problem 517
14b-5 Methodology for Design of Heating Mixing System 518
14b-6 Example 518
 14b-6.1 Resolution 519
Acknowledgments 529
Nomenclature 529
Greek Symbols 531
References 531

15 Solids Mixing

Part A: Fundamentals of Solids Mixing 533
Fernando J. Muzzio, Albert Alexander, Chris Goodridge, Elizabeth Shen, and Troy Shinbrot

15-1 Introduction
15-2 Characterization of Powder Mixtures
 15-2.1 Ideal Mixtures versus Real Mixtures
 15-2.2 Powder Sampling
 15-2.3 Scale of Scrutiny
 15-2.4 Quantification of Solids Mixing: Statistical Methods
15-3 Theoretical Treatment of Granular Mixing
 15-3.1 Definition of the Granular State
15-3.2 Mechanisms of Mixing: Freely-Flowing Materials
15-3.3 Mechanisms of Mixing: Weakly Cohesive Material
15-3.4 De-mixing
15-4 Batch Mixers and Mechanisms
15-4.1 Tumbling Mixers
15-4.2 Convective Mixers
15-5 Selection and Scale-up of Solids Batch Mixing Equipment
15-5.1 Scaling Rules for Tumbling Blenders
15-5.2 Final Scale-up and Scale-down Considerations
15-6 Conclusions

Part B: Mixing of Particulate Solids in the Process Industries
Konanur Manjunath, Shrikant Dhodapkar, and Karl Jacob

15-7 Introduction
15-7.1 Scope of Solid–Solid Mixing Tasks
15-7.2 Key Process Questions
15-8 Mixture Characterization and Sampling
15-8.1 Type of Mixtures
15-8.2 Statistics of Random Mixing
15-8.3 Interpretation of Measured Variance
15-8.4 Sampling
15-9 Selection of Batch and Continuous Mixers
15-9.1 Batch Mixing
15-9.2 Continuous Mixing
15-9.3 Comparison between Batch and Continuous Mixing
15-9.4 Selection of Mixers
15-10 Fundamentals and Mechanics of Mixer Operation
15-10.1 Mixing Mechanisms
15-10.2 Segregation Mechanisms
15-10.3 Mixer Classification
15-11 Continuous Mixing of Solids
15-11.1 Types of Continuous Mixers
15-12 Scale-up and Testing of Mixers
15-12.1 Principle of Similarity
15-12.2 Scale-up of Agitated Centrifugal Mixers
15-12.3 Scale-up of Ribbon Mixers
15-12.4 Scale-up of Conical Screw Mixers (Nauta Mixers)
15-12.5 Scaling of Silo Blenders
15-12.6 Specifying a Mixer
15-12.7 Testing a Mixer
15-12.8 Testing a Batch Mixer
16 Mixing of Highly Viscous Fluids, Polymers, and Pastes
the late David B. Todd

16-1 Introduction 539

16-2 Viscous Mixing Fundamentals
- 16-2.1 Challenges of High Viscosity Mixing
- 16-2.2 Dispersive and Distributive Mixing
- 16-2.3 Elongation and Shear Flows
- 16-2.4 Power and Heat Transfer Aspects

16-3 Equipment for Viscous Mixing
- 16-3.1 Batch Mixers
- 16-3.2 Continuous Mixers
- 16-3.3 Special Mixers

16-4 Equipment Selection

16-5 Summary

17 Mixing in the Fine Chemicals and Pharmaceutical Industries
Edward L. Paul (retired), Michael Midler, and Yongkui Sun

17-1 Introduction 542

17-2 General Considerations
- 17-2.1 Batch and Semibatch Reactors
- 17-2.2 Batch and Semibatch Vessel Design and Mixing
- 17-2.3 Multipurpose Design
- 17-2.4 Batch and Semibatch Scale-up Methods
- 17-2.5 Continuous Reactors
- 17-2.6 Reaction Calorimetry

17-3 Homogeneous Reactions
- 17-3.1 Mixing-Sensitive Reactions
- 17-3.2 Scale-up of Homogeneous Reactions
- 17-3.3 Reactor Design for Mixing-Sensitive Homogeneous Reactions

17-4 Heterogeneous Reactions
- 17-4.1 Laboratory Scale Development
- 17-4.2 Gas–Liquid and Gas–Liquid–Solid Reactions
17-4.3 Liquid–Liquid Dispersed Phase Reactions
17-4.4 Solid–Liquid Systems

17-5 Mixing and Crystallization
17-5.1 Aspects of Crystallization That Are Subject to Mixing Effects
17-5.2 Mixing Scale-up in Crystallization Operations

References

18 Mixing in the Fermentation and Cell Culture Industries
Ashraf Amanullah and Barry C. Buckland, and Alvin W. Nienow

18-1 Introduction

18-2 Scale-up/Scale-down of Fermentation Processes
18-2.1 Interaction between Liquid Hydrodynamics and Biological Performance
18-2.2 Fluid Dynamic Effects of Different Scale-up Rules
18-2.3 Influence of Agitator Design
18-2.4 Mixing and Circulation Time Studies
18-2.5 Scale-down Approach
18-2.6 Regime Analysis
18-2.7 Effects of Fluctuating Environmental Conditions on Microorganisms
18-2.8 Required Characteristics of a Model Culture for Scale-down Studies
18-2.9 Use of Bacillus subtilis as an Oxygen- and pH-Sensitive Model Culture
18-2.10 Experimental Simulations of Dissolved Oxygen Gradients Using Bacillus subtilis
18-2.11 Experimental Simulations of pH Gradients Using Bacillus subtilis

18-3 Polysaccharide Fermentations
18-3.1 Rheological Characterization of Xanthan Gum
18-3.2 Effects of Agitation Speed and Dissolved Oxygen in Xanthan Fermentations
18-3.3 Prediction of Cavern Sizes in Xanthan Fermentations Using Yield Stress and Fluid Velocity Models
18-3.4 Influence of Impeller Type and Bulk Mixing on Xanthan Fermentation Performance
18-3.5 Factors Affecting the Biopolymer Quality in Xanthan and Other Polysaccharide Fermentations

18-4 Mycelial Fermentations
18-4.1 Energy Dissipation/Circulation Function as a Correlator of Mycelial Fragmentation
CONTENTS

18-4.2 Dynamics of Mycelial Aggregation
18-4.3 Effects of Agitation Intensity on Hyphal Morphology and Product Formation
18-4.4 Impeller Retrofitting in Large Scale Fungal Fermentations

18-5 Escherichia coli Fermentations
18-5.1 Effects of Agitation Intensity in E. coli Fermentations

18-6 Cell Culture
18-6.1 Shear Damage and Kolmogorov's Theory of Isotropic Turbulence
18-6.2 Cell Damage Due to Agitation Intensity in Suspension Cell Cultures
18-6.3 Bubble-Induced Cell Damage in Sparged Suspension Cultures
18-6.4 Use of Surfactants to Reduce Cell Damage Due to Bubble Aeration in Suspension Culture
18-6.5 Cell Damage Due to Agitation Intensity in Microcarrier Cultures
18-6.6 Physical and Chemical Environment

18-7 Plant Cell Cultures
 Nomenclature
 References

19 Fluid Mixing Technology in the Petroleum Industry 547
 Ramesh R. Hemrajani

19-1 Introduction 548
19-2 Shear-Thickening Fluid for Oil Drilling Wells
19-3 Gas Treating for CO₂ Reduction
19-4 Homogenization of Water in Crude Oil Transfer Lines
 19-4.1 Fixed Geometry Static Mixers
 19-4.2 Variable Geometry In-line Mixer
 19-4.3 Rotary In-line Blender
 19-4.4 Recirculating Jet Mixer
19-5 Sludge Control in Crude Oil Storage Tanks
 19-5.1 Side-Entering Mixers
 19-5.2 Rotating Submerged Jet Nozzle
19-6 Desalting
19-7 Alkylation
19-8 Other Applications
 Nomenclature
 References
CONTENTS

20 Mixing in the Pulp and Paper Industry 551
 the late Chad P.J. Bennington

 20-1 Introduction 552
 20-2 Selected Mixing Applications in Pulp and Paper Processes:
 Nonfibrous Systems
 20-2.1 Liquid–Liquid Mixing
 20-2.2 Gas–Liquid Mixing
 20-2.3 Solid–Liquid Mixing
 20-2.4 Gas–Solid–Liquid Mixing
 20-3 Pulp Fiber Suspensions
 20-3.1 Pulp Suspension Mixing
 20-3.2 Characterization of Pulp Suspensions
 20-3.3 Suspension Yield Stress
 20-3.4 Turbulent Behavior of Pulp Suspensions
 20-3.5 Turbulence Suppression in Pulp Suspensions
 20-3.6 Gas in Suspension
 20-4 Scales of Mixing in Pulp Suspensions
 20-5 Macroscale Mixing/Pulp Blending Operations
 20-5.1 Homogenization and Blending
 20-5.2 Repulping
 20-5.3 Lumen Loading
 20-6 Mixing in Pulp Bleaching Operations
 20-6.1 Pulp Bleaching Process
 20-6.2 Mixing Equipment in Pulp Bleaching Objectives
 20-6.3 Mixing Assessment in Pulp Suspensions
 20-6.4 Benefits of Improved Mixing
 20-7 Conclusions
 Nomenclature
 References

21a Mechanical Design of Mixing Equipment 555
 David S. Dickey and Julian B. Fasano

 21-1 Introduction 556
 21-2 Mechanical Features and Components of Mixers
 21-2.1 Impeller-Type Mixing Equipment
 21-2.2 Other Types of Mixers
 21-3 Motors
 21-3.1 Electric Motors
 21-3.2 Air Motors
 21-3.3 Hydraulic Motors
CONTENTS

21.4 Speed Reducers
 21-4.1 Gear Reducers
 21-4.2 Belt Drives
21.5 Shaft Seals
 21-5.1 Stuffing Box Seals
 21-5.2 Mechanical Seals
 21-5.3 Lip Seals
 21-5.4 Hydraulic Seals
 21-5.5 Magnetic Drives
21.6 Shaft Design
 21-6.1 Designing an Appropriate Shaft
 21-6.2 Shaft Design for Strength
 21-6.3 Hollow Shaft
 21-6.4 Natural Frequency
21.7 Impeller Features and Design
 21-7.1 Impeller Blade Thickness
 21-7.2 Impeller Hub Design
21.8 Tanks and Mixer Supports
 21-8.1 Beam Mounting
 21-8.2 Nozzle Mounting
 21-8.3 Other Structural Support Mounting
21.9 Wetted Materials of Construction
 21-9.1 Selection Process
 21-9.2 Selecting Potential Candidates
 21-9.3 Corrosion–Fatigue
 21-9.4 Coatings and Coverings
Nomenclature
References

21b Magnetic Drives for Mixers 559
 David S. Dickey
 21b-1 Introduction 559
 21b-2 Laboratory Magnetic Stirrers 559
 21b-3 Top-Entering Magnetic Mixer Drives 561
 21b-4 Bottom-Entering Magnetic Mixer Drives 563

22 Role of the Mixing Equipment Supplier 567
 Ron Weetman
 22-1 Introduction 568
 22-2 Vendor Experience
 22-2.1 Equipment Selection and Sizing
 22-2.2 Scale-up
22-3 Options
 22-3.1 Impeller Types
 22-3.2 Capital versus Operating Costs: Torque versus Power
22-4 Testing
 22-4.1 Customer Sample Testing
 22-4.2 Witness Testing
 22-4.3 Laser Doppler Velocimetry
 22-4.4 Computational Fluid Dynamics
22-5 Mechanical Reliability
 22-5.1 Applied Loads Due to Fluid Forces
 22-5.2 Manufacturing Technologies
22-6 Service
 22-6.1 Changing Process Requirements
 22-6.2 Aftermarket and Worldwide Support
22-7 Key Points
 References

23 Commissioning Mixing Equipment
 David S. Dickey, Eric Janz, Todd Hutchinson, Thomas Dzikowski,
 Richard O. Kehn, and Kayla Preston and Jay Dinnison
 23-1 Introduction 569
 23-2 Commissioning Concepts 570
 23-3 Instructions for Commissioning 572
 23-3.1 Introduction 572
 23-3.2 Warranty Terms 573
 23-3.3 Limitation of Liabilities 573
 23-4 Safety Instructions 573
 23-5 Receiving the Equipment 575
 23-5.1 Receipt of the Mixer Drive 575
 23-5.2 Receipt of the Impeller 575
 23-5.3 Rust Prevention 576
 23-5.4 Shipping Covers 576
 23-5.5 Field Application of Corrosion Protection 576
 23-5.6 Short-Term Storage 577
 23-5.7 Long-Term Storage 577
 23-6 Kinds of Storage 578
 23-6.1 Indoor Storage: Dry, Temperature-Controlled Area 578
 23-6.2 Indoor Storage: No Temperature or Humidity Control 579
 23-6.3 Outdoor Storage: Not Recommended 580
 23-6.4 Preparing Stored Mixers for Service 581
CONTENTS

23-7 Installation
 23-7.1 Preparation 582
 23-7.2 Lifting Instructions 582
 23-7.3 Shaft Installation 582
 23-7.4 Mixer Mounting 586
 23-7.5 Mixer Drive Installation 588
 23-7.6 Flexible Coupling Installation 589

23-8 Lubrication
 23-8.1 Filling the Mixer Drive 591
 23-8.2 Low-Temperature Operation 591
 23-8.3 Kinds of Lubrication 591
 23-8.4 Oil Changes Predictive Maintenance (PdM) Procedure and Schedule 592

23-9 Wiring
 23-9.1 Electric Motors—Single Phase 594
 23-9.2 Electric Motors—Three Phase 594
 23-9.3 Electric DC Variable Speed 594
 23-9.4 Electric AC Variable Speed 595
 23-9.5 Other Types of Motors (e.g., Hydraulic Drives) 595

23-10 Initial Operation
 23-10.1 Preliminary Checks 595
 23-10.2 Startup Procedure 596
 23-10.3 Operational Checks 596

23-11 Troubleshooting 597

23-12 Maintenance
 23-12.1 Preventive Maintenance Schedule 597

23-13 Commissioning Shaft Seals 597
 23-13.1 Stuffing Box Seals 601
 23-13.2 Mechanical Seals 604
 23-13.3 Other Seals 608

23-14 Mechanical Checkout, Startup, and Troubleshooting of Agitator Equipment 609
 23-14.1 Introduction 609
 23-14.2 Mechanical Review 609
 23-14.3 Startup and Commissioning 620
 23-14.4 Troubleshooting Mixing Applications 627

23-15 Summary 639
 Nomenclature 639
 Greek Symbols 640
 References 640
24 Mixing Safety
Gord Winkel and David S. Dickey

24-1 Introduction 641
24-2 The Practice of Risk Management 642
24-3 Summary Comments on Mixing Safety 661
References 663

25 Mixing Issues in Crystallization and Precipitation Operations
Alvin W. Nienow and Edward L. Paul

25-1 Introduction 665
25-2 Basic Crystallization Concepts 667
 25-2.1 Solubility Curve and Metastable Zone Width 667
 25-2.2 Methods of Achieving Supersaturation 669
 25-2.3 Nucleation Phenomena 670
 25-2.4 Crystal Growth 672
 25-2.5 Conclusions 672
25-3 Impact of Mixing on Primary Heterogeneous Nucleation 673
 25-3.1 General Considerations and Batch/Semibatch Processes 673
 25-3.2 Implications for Scale-up; Continuous Crystallization 673
 25-3.3 Conclusions 678
25-4 Impact of Mixing on Secondary Nucleation 678
 25-4.1 General Considerations 678
 25-4.2 Crystal Impacts on the Impeller and Other Surfaces 679
 25-4.3 Crystal–Crystal Impacts 682
25-5 Impact of Mixing on Crystal Growth and Dissolution Rates 684
 25-5.1 Growth 684
 25-5.2 Dissolution 687
25-6 Selecting Operating Conditions to Optimize Crystal Suspension and Withdrawal 687
 25-6.1 Introduction 687
 25-6.2 Prediction of N_{JS} 688
 25-6.3 Scale-up of Crystal Suspension 691
 25-6.4 Crystal Distribution and Withdrawal 691
25-7 Damkohler Number for Nucleation and Subsurface Feeding of Reactants 695
 25-7.1 The Concept 695
 25-7.2 Issues in Subsurface Feeding 698
CONTENTS

25-8 Stirred Vessel Crystallizers 700
 25-8.1 Batch Crystallizer 700
 25-8.2 Continuous Crystallizer 702
25-9 Other Types of Equipment 704
 25-9.1 Fluidized Beds 704
 25-9.2 Impinging Jet Crystallizer 704
25-10 Precipitation 706
 25-10.1 Precipitation in Stirred Vessels 707
 25-10.2 Use of Impinging Jets and Other Rapid Mixing Devices 711
25-11 Agglomeration and Oiling Out 712
25-12 Conclusions 714

Nomenclature 716
Greek Symbols 717
Subscripts 718
References 718
Appendices 722
 Problem Example 1: Slow Approach to Equilibrium 722
 Problem Example 2 723
 Problem Example 3 725

26 Mixing in the Water and Wastewater Industry 729
Michael K. Dawson

26-1 Introduction 729
 26-1.1 Treatment of Water, Wastewater, and Sludge 729
 26-1.2 Mixing Operations in Water, Wastewater, and Sludge Processes 733
26-2 Mixing in Drinking Water Treatment 735
 26-2.1 Process Applications, Mixing Objectives, Design Criteria, and Constraints 735
 26-2.2 Equipment Types 749
 26-2.3 Coagulant Mixing Calculation Example 756
26-3 Mixing in Wastewater Treatment 758
 26-3.1 Process Applications, Mixing Objectives, Design Criteria, and Constraints 758
26-4 Mixing in Sludge Treatment 765
 26-4.1 Process Applications, Mixing Objectives, Design Criteria and Constraints 766
 26-4.2 Equipment Types 769
 26-4.3 Modeling Study: Anaerobic Digester Mixing 772
27 Mixing in the Food Industry
P. J. Cullen, Wesley Twombly, Robin Kay Connelly, and David S. Dickey

27-1 Introduction 783
27-2 Building or Reducing Texture Through Mixing 784
 27-2.1 Dough Development 785
 27-2.2 Texture Formation by Extrusion Mixing 794
27-3 Role of Mixing in Food Treatment 796
 27-3.1 Heat Transfer 797
27-4 Food Homogeneity 802
27-5 Advances in the Science of Food Mixing 803
27-6 Other Food Mixers 803
 27-6.1 Double-Motion Mixers 805
 27-6.2 High-Shear Mixing Equipment 809
 27-6.3 Special Devices That Function as Mixers 815
 27-6.4 Powder Mixing Equipment 817
 27-6.5 Other Common Mixers Used for Food Applications 817
27-7 Typical Food Groups 818
 27-7.1 Breads 818
 27-7.2 Breakfast Foods 819
 27-7.3 Chocolate 819
 27-7.4 Condiments 819
 27-7.5 Dairy Products 819
 27-7.6 Fermented Foods 820
 27-7.7 Food Ingredients 820
 27-7.8 Meat Foods 821
 27-7.9 Pet Foods 821
 27-7.10 Sauces 821
 27-7.11 Snack Foods 822
 27-7.12 Soups 822
 27-7.13 Vegetable Foods 822
 Nomenclature 823
 Greek Symbols 823
 References 823

28 Mixing and Processes Validation in the Pharmaceutical Industry
Otute Akiti and Piero M. Armenante

28-1 Introduction 827
CONTENTS

28-2 Validation in Pharmaceutical Industry

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-2.1 Introduction to Concept of Validation</td>
<td>828</td>
</tr>
<tr>
<td>28-2.2 Historical Milestones for Validation in Pharmaceutical Industry</td>
<td>828</td>
</tr>
<tr>
<td>28-2.3 Process Validation and Pharmaceutical Development Cycle</td>
<td>828</td>
</tr>
<tr>
<td>28-2.4 Current Pharmaceutical Process Validation</td>
<td>830</td>
</tr>
<tr>
<td>28-2.5 Other Components of Validation</td>
<td>831</td>
</tr>
</tbody>
</table>

28-3 Pharmaceutical Processes and Role of Mixing in Pharmaceutical Production

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-3.1 Overview of Pharmaceutical Process Development and Manufacturing</td>
<td>836</td>
</tr>
<tr>
<td>28-3.2 Mixing in Pharmaceutical Processes</td>
<td>843</td>
</tr>
</tbody>
</table>

28-4 Examples of Process Validation in Pharmaceutical Industry

28-5 Example of Process Validation for API Manufacturing: Manufacturing of EX123 API

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-5.1 Process Validation for EX123 API Manufacturing: Stage 1—Process Design</td>
<td>852</td>
</tr>
<tr>
<td>28-5.2 Process Validation for EX123 API Manufacturing: Stage 2—Process Qualification</td>
<td>853</td>
</tr>
<tr>
<td>28-5.3 Process Validation for EX123 API Manufacturing: Stage 3—Continued Process Verification</td>
<td>858</td>
</tr>
</tbody>
</table>

28-6 Example of Process Validation for Drug Product Manufacturing: Manufacturing of EX123 Drug Product

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-6.1 Process Validation for EX123 Drug Product Manufacturing: Stage 1—Process Design</td>
<td>864</td>
</tr>
<tr>
<td>28-6.2 Process Validation for EX123 Drug Product Manufacturing: Stage 2—Process Qualification</td>
<td>872</td>
</tr>
<tr>
<td>28-6.3 Process Validation for EX123 Drug Product Manufacturing: Stage 3—Continued Process Verification</td>
<td>884</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>885</td>
</tr>
</tbody>
</table>

References

Index 891