Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 Disease Surveillance, a Public Health Priority
 Joseph S. Lombardo, David Ross
 1.1 Introduction
 1.2 The Emerging Role of Informatics in Public Health Practice
 1.3 Early Use of Technology for Public Health Practice
 1.3.1 Early Use of Analytics, Visualization, and Communications
 1.3.2 Early Informatics Applications in Medicine & Public Health
 1.3.3 Public Health Records Archiving
 1.4 Guiding Principles for Development of Public Health Applications
 1.5 Information Requirements for Automated Disease Surveillance
 1.6 Historical Impact of Infectious Disease Outbreaks
 1.6.1 Smallpox
 1.6.2 Plague
 1.6.3 Spanish Influenza, 1918
 1.6.4 Influenza Pandemics after 1918
 1.7 Disease as a Weapon
 1.7.1 Bioterrorism
 1.8 Modern Disease Surveillance Applications
 1.8.1 Components of an Early Recognition Disease Surveillance System
 1.8.2 Modern Surveillance Applications for Use by State and Local Health Departments
 1.8.3 National Disease Surveillance Initiatives
 1.9 Summary
 References

Part I: System Design and Implementation
 vii
2 Understanding the Data: Health Indicators in Disease Surveillance 43
 Steven Babine, Steven Magruder, Shilpa Bhatre, Jacqueline Cohenly, Joseph S. Lombardo

2.1 Data Source Concepts 44
2.2 Data from Pharmacy Chains 49
2.3 Data from EMS and 911 58
2.4 Data from Telephone Triage Hotlines 60
2.5 Data from School Absenteeism and School Nurses 63
2.6 Data from Hospital Visits 65
2.7 Data from Physicians’ Office Visits 66
2.8 Laboratories Role in pre-diagnostic Surveillance 68
2.9 Other Health Indicator Data 70
 2.9.1 Environmental Data 70
 2.9.2 Animal Health Data 72
2.10 Data Source Evaluation 74
 2.10.1 Approach and Methodology 75
 2.10.2 Example: Wildfires (October 2003) 76
 2.10.3 Example: Influenza Outbreak (December 2003) 79
 2.10.4 Example: Gastrointestinal Illness (January–February 2004) 83
 2.10.5 Conclusions 85
2.11 Study Questions 85
 References 87

3 Obtaining the Data 91
 Richard Wojnick, Logan Hamermesh, Carol Sniegoski, Rebke Holtry

3.1 Introduction to Data Collection and Archiving 91
 3.1.1 The Internet: Universal Connectivity 92
 3.1.2 Databases: Flexible Data Storage 95
 3.1.3 Summary 97
3.2 Obtaining Access to Surveillance Data 98
 3.2.1 Sharing Health Indicator Data 98
 3.2.2 Data-Sharing Issues 103
 3.2.3 HIPAA and Disease Surveillance 104
 3.2.4 Summary of Data Sharing 112
3.3 The Role of Standards in Data Exchange 113
 3.3.1 Types of Standards 114
 3.3.2 Standards Development 115
 3.3.3 Standards for Health Indicator Data in Biosurveillance 117
3.3.4 National Health Information Systems — Implementing Standards

3.4 Establishing the Data Feeds
3.4.1 Information Systems of the Data Provider or Source
3.4.2 Setting Up the Data Feed
3.4.3 Data Characteristics
3.4.4 Data Fields or Elements
3.4.5 Data Transfer Format
3.4.6 Data Transfer Protocol
3.4.7 Security Considerations
3.4.8 Data Import Methods
3.4.9 Data Cleaning
3.4.10 Data Quality
3.4.11 Summary

3.5 Study Questions

References

4 Alerting Algorithms for Biosurveillance

4.1 Statistical Alerting Algorithms

4.2 Features of Alerting Algorithms
4.2.1 Expected Data Behavior and the Denominator Problem
4.2.2 Recognizing the Unexpected
4.2.3 Use of Data Covariates
4.2.4 Components of an Alerting Algorithm
4.2.5 Steps in Algorithmic Processing

4.3 Outbreak Detection as a Signal-to-Noise Problem
4.3.1 Understanding the Noise Background
4.3.2 Characterizing the Outbreak Signal
4.3.3 Importance of Data Aggregation Decisions

4.4 Algorithms Based on Time-Series Data
4.4.1 Control Charts for Public Health Monitoring
4.4.2 Data Forecasting for Public Health Monitoring

4.5 Spatiotemporal Alerting Methods
4.5.1 The Search for Hotspots and the Spatial Baseline
4.5.2 Spatial Scan Statistics and Enhancements
4.5.3 Global Clustering Methods and Adaptations

4.6 Methods Considering Multiple Data Sources
4.6.1 Decision Making with Multiple Data Sources
5 Putting It Together: The Biosurveillance Information System

Logan Hensin, Kim, Richard Wenzel, Wayne Laschen, Raj Ashar, Carol Setegoski, Nathaniel Tabernor

5.1 Introduction

5.2 System Architectures for Disease Surveillance
5.2.1 Stand-Alone System Application Design
5.2.2 Thick Client vs. Thin Client
5.2.3 Three-Tier and Multitier Architectures

5.3 Databases
5.3.1 Database Design
5.3.2 Database Server Software
5.3.3 Database Server Hardware
5.3.4 Database Server Costs
5.3.5 DBMS Vendor Overview

5.4 Web Applications
5.4.1 Web Servers
5.4.2 Web Applications and Browsers
5.4.3 Web Applications and Geographic Information Systems
5.4.4 Web-Based Application Integration and Automation

5.5 Implementing Syndromic Grouping
5.5.1 Fixed Vocabulary Data
5.5.2 Free-Text Data

5.6 Implementing Detectors
5.6.1 When Will Detectors Be Used?
5.6.2 Designing the Detector Interface

5.7 Visualization in a Disease Surveillance Application
5.7.1 Detection-Focused Visualizations
5.7.2 Information System Interfaces
5.7.3 Visualizing Data and Information

5.8 Communication Among Surveillance Users
5.8.1 User Comments
5.8.2 Embedding User Comments into System Components

5.9 Security
5.9.1 Design and Implementation of a Secure System
5.9.2 User Authentication
5.9.3 Access Privilege Management Overview
5.9.4 User Responsibilities

5.10 System Administration
5.10.1 Physical Administration
5.10.2 Maintaining Software
5.10.3 User Management

5.11 Summary

5.12 Study Questions

References

Part II: Case Studies

6 Modern Disease Surveillance Systems in Public Health Practice

Shari Haggard Lewis, Kathy Hurt-Mullen, Colleen Martin, Haobo Ma,
Jerome T. Tokars, Joseph S. Lombardo, Steven Babish

6.1 Public Health Surveillance Requirements
6.1.1 Disease Reporting Requirements
6.1.2 Existing Automated Disease Surveillance Systems

6.2 Identification of Abnormal Health Conditions
6.2.1 Monitoring Surveillance System Outputs
6.2.2 Characterization of Anomalies
6.2.3 Case Studies
6.2.4 Summary of Anomaly Characterization
6.2.5 Assessing the Public Health Importance of Findings

6.3 Utility at the Local Level
6.3.1 Specific System Features and Utility to Public Health Officials
6.3.2 Local Perspective on Implementation
6.3.3 Regional Perspective

6.4 Electronic Biosurveillance at the National Level
6.4.1 BioSense System Description
6.4.2 Monitoring of BioSense Application for National Surveillance
6.4.3 Movement Toward Surveillance System Standardization

6.5 Summary

6.6 Study Questions

References

7 Canadian Applications of Modern Surveillance Informatics

Jeff Aramini, Shaker Nizar Makki

7.1 Introduction: Disease Surveillance in Canada
7.1.1 Understanding the True Public Health Needs
8.1 Introduction

8.1.1 What Is Tele-health?

8.1.2 The UK Experience: NHS Direct

8.1.3 Using Telephone Triage Data for Syndromic Surveillance

8.2 System Design and Epidemiological Considerations

8.2.1 Data Availability

8.2.2 System Design

8.2.3 Investigating Exceedances

8.3 Results from the NHS Direct Syndromic Surveillance System

8.3.1 Stages 1 to 3

8.3.2 What Have the Data Detected?

8.3.3 Weekly Reporting

8.4 Adding Value to the Surveillance Data

8.4.1 Linking Syndromic Data with Traditional Laboratory Sources

8.4.2 A Statistical Model: Types of Infections That Cause People to Phone Telephone Triage Systems

8.5 Conclusions

8.5.1 Main Benefits of the System
8.5.2 System Evaluation 358
8.5.3 Cautionary Note for Future Work 358
8.5.4 Integration with Other US Primary Care Surveillance 359
8.5.5 Recommendations 359
8.5.6 Final Remarks 361
8.6 Study Questions 361
References 362

9 Surveillance for Emerging Infection Epidemics in Developing Countries: EWORS and Alerta DISAMAR 367
 Jocelyn Chretien, David Blazes, Cecilia Miranda, Jonathan Glass,
 Sheri Happel Lewis, Joseph S. Lombardo, R. Loren Erickson

9.1 Improving Surveillance in Resource-Poor Settings 368
9.2 U.S. Military Overseas Public Health Capacity Building 369
9.3 Case Study 1: EWORS (Southeastern Asia and Peru) 371
 9.3.1 System Development, Configuration, and Operation 371
 9.3.2 Outbreak Detection and Response 373
 9.3.3 System Flexibility 378
 9.3.4 Summary 379
9.4 Case Study 2: Alerta DISAMAR (Peru) 380
 9.4.1 System Development, Configuration, and Operation 380
 9.4.2 Outbreak Detection and Response 384
 9.4.3 System Flexibility 387
 9.4.4 Summary 390
9.5 Conclusions 390
9.6 Study Questions 391
References 392

10 Evaluating Automated Surveillance Systems 399
 David L. Buckeridge, Michael W. Thompson, Steven Bobin, Marvin L. Sikes

10.1 The Context of Evaluation 399
 10.1.1 Why? — The Need to Evaluate 399
 10.1.2 What? — The Focus of Evaluation 400
 10.1.3 How? — The Methods of Evaluation 401
10.2 Defining the Evaluation 401
 10.2.1 Question and Scope 401
 10.2.2 System Configuration 402
12.3.2 Biostatistics

12.3.3 Information Technology

12.3.4 Health Department Business Processes

12.4 Study Questions

References

Index