Index

A
adsorbed layer, 157, 159, 170–171
aggregates, 2, 5–6, 39, 152–153, 155–156, 160, 163–164, 171
aggregation, 2, 5, 19–20, 152–153
alkyl benzene sulfonate, 156
alumina, 10, 29, 122, 171
amorphization, 137
amphiphilic, 152, 159
analytical transmission electron microscopy (ATEM), 149
annealing, 11, 25, 95, 97–98, 102–103, 123
anti-wear additive, 46, 204
anti-wear film, 151, 204, 210
Archimede forces, 2
asperities, 28, 87–88
atomic force microscopy (AFM), 28, 49, 114, 117, 139, 156, 158–160, 162
Auger spectroscopy, 44

B
barium, 164
base PAO, 217
bearing effect, 33, 35–40
borate esters, 209
boric acid (H₃BO₃), 203, 207–215
chemical affinity, 220
films, 213–215
interlayer shear, 215
lubricity, 213–215
nanotubes, 217
triclinic crystal structure, 210–211
boron minerals, 208
boron, 208
boron-based additives, 216
boron-rich boundary film, 220
boundary lubrication, 28–47
bronze powder composites impregnated coatings, 9
Brownian movement, 3–4

C
C₆₀, 7–8, 28, 47, 99, 106, 109–110, 118, 122, 127–128, 142
calcite, 158, 169–170
calcium, 5, 156–158, 160, 162–166, 168–169
carbon nanotubes
growth mechanism, 128–130
multiwall nanotubes, 8, 123, 133–136
Raman spectroscopy characterization, 124–126
singlewall nanotubes, 10, 48, 99, 106, 110, 122–123, 125–128
synthesis methods, 122–126
transmission electron microscopy characterization, 52, 94, 100–101, 111
carbon onions
growth mechanism, 94–95
Raman spectroscopy characterization, 95, 102–103

Nanolubricants Edited by J. M. Martin and N. Ohmae
© 2008 John Wiley & Sons, Ltd
carbon onions (Continued)
synthesis methods, 94, 96, 98
transmission electron microscopy characterisation, 52, 94, 100–101, 111
catalyst particles, 128–133
chemical adsorbates, 206
colloidal dispersion additive, 210
colloidal solution, 5, 40
constant of Hamaker, 2
continuous delivery of sheets, 82
critical micellar concentration, 152
D
“Drug delivery mechanism,” 86
diamond anvil cell, 68–69, 71–73, 75, 77, 79, 84, 86
diamond core, 97–98, 103–108
diamond like carbon coatings (DLC), 7, 10–11, 53, 65, 68, 93, 100, 118, 121, 138
diamond, 10, 28, 93–95, 99–100, 121, 205, 209
DWNTs, 123–125, 133, 140
E
electrical contact resistance (ECR), 58, 60, 149–150, 165, 197–198, 225
electron diffraction, 110, 151, 168–169
electron spectroscopic imaging (ESI), 101
electronic states, of atoms, 206
capsulated nano-sized particles, 155–157
energy dispersive X rays spectroscopy (EDXS), 151, 169
energy filtered image, 159, 162
exfoliation of fullerenes, 68, 84–85
extended X rays absorption fine structures (EXAFS), 22, 67, 151, 155–158
F
Fe-MWNTs, 123, 133, 135–136
flake-like wear debris, 136, 138
freeze fracturing, 153
friction force microscopy (FFM), 8
G
graphene, 98, 118–119, 122, 139
H
HAADF, 53–54, 138
hematite, 112, 121
Hertz’s theory, 29, 38, 68, 78–79, 81
Hertzian contact, 38, 68, 74–80
hexagonal-BN, 209–210
hydrophilic, 5, 152, 154
hydrostatic pressures, 29, 68–71, 73, 78–79, 84, 123
I
IF-MoS2, 3–4, 7, 9, 18–32
IF-MoS2
EXAFS characterization, 22
Raman spectroscopy characterization, 20–22
synthesis methods, 19–20
transmission electron microscopy characterization, 23–24
XANES characterization, 22
X-ray diffraction characterization, 25
IF-NbS2, 3–4, 45–46, 48, 53–54, 66–67
IF-TaS2, 21, 45–47, 98
IF-WS2 coatings, 8–9
IF-WS2
nuclear magnetic characterization, 25
Raman spectroscopy characterization, 21, 26
synthesis methods, 19–20
Tof-SIMS characterization, 26–27
transmission electron microscopy characterization, 23–24
X-ray diffraction characterization, 25
X-ray photospectroscopic (XPS) characterization, 26–27
IF-WS2, 18–29, 33–35
incommensurable surfaces, 53
incommensurate conditions, 15–17, 53, 84–86
inorganic fullerene-like nanoparticles, 1, 3, 8, 18
inorganic fullerenes, 1, 3, 8, 18
Index

In-situ optical video, 65–67
In-situ Raman analyses, 67–69
In-situ Raman spectroscopy, 65, 67–69

L
Lamellar compound, 1, 3, 15, 18, 21–22, 25, 28, 40, 46, 53, 70, 79, 84, 88
lamellar packing, 152–154, 170
Langmuir-Blodgett films, 6–7
loading-unloading, 76–77, 79
lubrication mechanisms, of solid lubricants, 205–207
lyophilic, 152

M
maghemite, 112, 114–115, 120–121
magnetite, 112, 114–115, 120–121
metaboric acid, 210
metal dichalcogenides, 15–88
micelle, 5–7, 87, 149–172
mineral oil, 219
molybdenum disulphide (2H-MoS2), 15, 203–204
molybdenum dithiocarbamate (MoDTC), 84, 87
molybdenum dithiophosphate (MoDTP), 84
molybdenum oxide, 16, 31, 62
Mo-S-I nanowires
 Raman spectroscopy characterization, 57, 62
 synthesis methods, 56
 transmission electron microscopy characterization, 60
 X-ray diffraction characterization, 56, 63
 multiwavelength Raman spectroscopy, 102–104
MWNTs, 110, 124, 131
nano-boric acid powder, 218–219
nanodiamond, 98–112
nanolubricants, made of metals
 introduction, 175–176
 of coinage metal nanoparticles
 copper nanoparticles passivated by carbon film, 180–181
 organic compound surface-capped copper nanoparticles, 177–180
 of low melting-point metal alloys nanoparticles
In-Sn, Bi-In and Pb-Bi nanoparticles prepared by direct-solution-dispersing method, 190–192
Sn-Bi and Sn-Cd alloy nanoparticles prepared by ultrasonic-assistant solution-dispersing method, 192–196
of low melting-point metal nanoparticles

indium, tin and bismuth via
direct-solution-dispersing method, 182–186
of lead and bismuth via surfactant-assisted solution-dispersing method, 186–189
mechanism of metal nanoparticles used as oil additives, 196–200
perspectives, 200–201
nanotubes of MoS2 – MoS2 nanotubes, 47–52
NbS2 nanotubes, 3–4, 21, 46–47, 49, 207
niobium disulphide, 21
Ni-P coating, 8–9, 29
Ni-Y/SWNTs, 110, 124, 131
octanoate, 156, 159–160, 163–170
octanoic, 163–164
optical micrograph, 150, 165–167
optical microscopy, 59, 150, 199
organoboron compounds, 209
orthoboric acid, 210
overbased alkyl benzene sulfonate (OCABS), 156–158, 160–163, 164, 168–169
overbased micelles, 1, 5–7, 156
platinum shadowed replica, 153–154, 157, 159–161
polymer coatings, 8–9
profilometer, 165, 167
quasi elastic light scattering (QELS), 153, 155–156
radial breathing mode (RBM mode), 124, 126
Raman spectroscopy
 Raman modes, 21, 69, 73–74, 79–80, 124–125
 Resonant Raman conditions, 125
Raman tribometry, 65–84
reservoirs, 28, 87
reverse micelle, 5, 149–172
scanning tunneling microscopy (STM), 25, 114
sedimentation, 2–4, 106
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>small angle X rays scattering (SAXS), 155–156</td>
</tr>
<tr>
<td>soap, 152–155, 159–160, 164, 170</td>
</tr>
<tr>
<td>solid lubricants</td>
</tr>
<tr>
<td>environmental mandates, 203</td>
</tr>
<tr>
<td>modern practices, 208</td>
</tr>
<tr>
<td>nano-powders, 208</td>
</tr>
<tr>
<td>shear planes, 205</td>
</tr>
<tr>
<td>transfer layers, 207</td>
</tr>
<tr>
<td>Soxhlet, 156–157</td>
</tr>
<tr>
<td>stochiometric, 154–155</td>
</tr>
<tr>
<td>strontianite, 168–170</td>
</tr>
<tr>
<td>strontium, 159–160, 163, 165–166, 168–170</td>
</tr>
<tr>
<td>suprafriction, 17, 53</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>tangential mode (TM), 125</td>
</tr>
<tr>
<td>tantalum disulfide, 21, 45–47, 98</td>
</tr>
<tr>
<td>transition-metal dichalcogenides, 205</td>
</tr>
<tr>
<td>tungsten disulfide (2H-WS2), 35</td>
</tr>
<tr>
<td>tungsten oxide, 35</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>UV Raman spectroscopy, 95, 103</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Van der Waals forces, 2, 6, 15, 20, 125, 152, 160, 205, 207, 209, 211</td>
</tr>
<tr>
<td>Van der Waals interactions, 125, 152, 160, 205, 209, 211</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>wet-STEM, 39, 41, 88, 140–141</td>
</tr>
<tr>
<td>WS2 nanotubes – NT WS2, 47–52</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>ZDDP, 149, 191, 198</td>
</tr>
<tr>
<td>Zinc Dialkyl DithioPhosphate, 149, 191, 198</td>
</tr>
<tr>
<td>zinc, 87, 138, 149, 165, 191, 198</td>
</tr>
<tr>
<td>ZnDTP, 87, 138, 165</td>
</tr>
</tbody>
</table>