Contents

Preface xiii
Acknowledgments xv
Acronyms xvii
Symbols xxi
Introduction xxv

1 Preliminaries on Deterministic and Random Signals 1

1.1 Time and frequency domain representation 1
1.1.1 Continuous time signals 1
1.1.2 Frequency domain representation for periodic signals 9
1.1.3 Discrete time signals 11

1.2 Energy and power 14
1.2.1 Energy and energy spectral density 14
1.2.2 Instantaneous and average power 17

1.3 Systems and transformations 21
1.3.1 Properties of a system 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.2</td>
<td>Filters</td>
<td>22</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Sampling</td>
<td>25</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Interpolation</td>
<td>26</td>
</tr>
<tr>
<td>1.4</td>
<td>Bandwidth</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Classification of signals and systems</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Uncertainty principle</td>
<td>32</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Practical definitions of band</td>
<td>32</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Heaviside conditions</td>
<td>34</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Sampling theorem</td>
<td>37</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Nyquist criterion</td>
<td>40</td>
</tr>
<tr>
<td>1.5</td>
<td>Representation of passband signals</td>
<td>41</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Analytic signal</td>
<td>42</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Baseband equivalent</td>
<td>47</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Baseband equivalent of a transformation</td>
<td>49</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Hilbert transform</td>
<td>51</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Envelope, instantaneous phase and frequency</td>
<td>54</td>
</tr>
<tr>
<td>1.6</td>
<td>Random variables and vectors</td>
<td>56</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Statistical description of random variables</td>
<td>57</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Expectation and statistical power</td>
<td>59</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Random vectors</td>
<td>61</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Second order description of random vectors, and Gaussian vectors</td>
<td>65</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Complex-valued random variables</td>
<td>67</td>
</tr>
<tr>
<td>1.7</td>
<td>Random processes</td>
<td>69</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Definition and properties</td>
<td>70</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Stationary and ergodic random processes</td>
<td>72</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Second order description of a WSS process</td>
<td>75</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Joint second order description of two random processes</td>
<td>79</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Second order description of a cyclostationary process</td>
<td>80</td>
</tr>
<tr>
<td>1.8</td>
<td>Systems with random inputs and outputs</td>
<td>82</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Filtering of a WSS random process</td>
<td>82</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Filtering of a cyclostationary random process</td>
<td>86</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Representation of passband WSS random processes</td>
<td>87</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Sampling and interpolation of stationary random processes</td>
<td>91</td>
</tr>
</tbody>
</table>

Appendix: The complementary normalized Gaussian distribution function 94
References and further reading 97
Problems 97
2 Characterization of Transmission Media and Devices

2.1 Two-terminal devices
- 2.1.1 Device representation
- 2.1.2 Electrical power
- 2.1.3 Measurement of electrical power
- 2.1.4 Load matching and available power
- 2.1.5 Thermal noise
- 2.1.6 Other sources of noise
- 2.1.7 Noise temperature
- 2.1.8 Equivalent noise models

2.2 Two-port networks
- 2.2.1 Reference model
- 2.2.2 Network power gain and matched network
- 2.2.3 Power gain in terms of electrical parameters
- 2.2.4 Noise temperature
- 2.2.5 Noise figure
- 2.2.6 Cascade of two-port networks
- 2.2.7 Signal-to-noise ratio

2.3 Transmission system model
- 2.3.1 Electrical model
- 2.3.2 System model
- 2.3.3 Output signal-to-noise ratio
- 2.3.4 Narrowband channel model
- 2.3.5 Link budget

2.4 Transmission media
- 2.4.1 Transmission lines and cables
- 2.4.2 Optical fibers
- 2.4.3 Radio links

References and further reading
Problems

3 Analog Modulation Systems

3.1 Principle and system model

3.2 Linear modulation
- 3.2.1 Double side band suppressed carrier (DSB-SC)
- 3.2.2 Single side band (SSB) modulation
- 3.2.3 Vestigial side band (VSB) modulation
CONTENTS

3.2.4 Quadrature modulation (QM) 182
3.2.5 Implementation issues 184
3.2.6 Performance measure and reference SNR 187
3.2.7 Performance evaluation 188

3.3 Amplitude modulation (AM) 191
3.3.1 Parameters 192
3.3.2 Implementation issues 195
3.3.3 Carrier recovery 199
3.3.4 Performance evaluation 201

3.4 Phase locked loop (PLL) 203

3.5 Angular modulation 204
3.5.1 Phase and frequency modulations 204
3.5.2 Bandwidth 208
3.5.3 Narrowband and wideband FM 209
3.5.4 Demodulation 211
3.5.5 Implementation issues 213
3.5.6 Performance evaluation 215
3.5.7 Pre-emphasis and de-emphasis in FM 218

3.6 Comparison of analog modulation systems 219

3.7 Frequency division multiplexing – multiple access 220

3.8 Super-heterodyne receiver 221

3.9 Examples of application 223
3.9.1 AM radio 223
3.9.2 FM radio 223
3.9.3 FM stereo radio 224
3.9.4 Television signal 225

References and further reading 226
Problems 226

4 Digital Modulation Systems 241

4.1 The space of signals 242
4.1.1 Linear space 242
4.1.2 Signals as elements in a linear space 245
4.1.3 Gram–Schmidt orthonormalization in signal spaces 247
4.1.4 Vector representation of signals 251
4.1.5 Orthogonal projections onto a signal space 255
4.2 Digital modulation theory 256
 4.2.1 Optimum detection in additive noise channels 256
 4.2.2 Statistical characterization of random vectors 259
 4.2.3 Optimum decision regions 261
 4.2.4 Maximum a posteriori criterion 266
 4.2.5 Maximum likelihood criterion 266
 4.2.6 Minimum distance criterion 267
 4.2.7 Implementation of minimum distance receivers 268
 4.2.8 The theorem of irrelevance 272

4.3 Binary modulation 273
 4.3.1 Error probability 273
 4.3.2 Antipodal and orthogonal signals 278
 4.3.3 Single filter receivers 282

4.4 M-ary modulation 284
 4.4.1 Bounds on the error probability 284
 4.4.2 Orthogonal and bi-orthogonal modulations 289

4.5 The digital modulation system 292
 4.5.1 System overview 292
 4.5.2 Front-end receiver implementation 296
 4.5.3 The binary channel 297
 4.5.4 The inner numerical channel 298

4.6 Examples of digital modulations 300
 4.6.1 Pulse amplitude modulation (PAM) 300
 4.6.2 Quadrature amplitude modulation (QAM) 306
 4.6.3 Phase shift keying (PSK) 316
 4.6.4 Frequency shift keying (FSK) 322
 4.6.5 Code division modulation 326

4.7 Comparison of digital modulation systems 329
 4.7.1 Reference bandwidth and link budget 329
 4.7.2 Comparison in terms of performance, bandwidth and spectral
 efficiency 331

References and further reading 332
Problems 333
5 Digital Transmission of Analog Signals 347

5.1 Digital representation of waveforms 348
5.1.1 Analog to digital converter (ADC) 348
5.1.2 Digital to analog converter (DAC) 349
5.1.3 Quantizer 352
5.1.4 Uniform quantizers 354
5.1.5 Quantization error 356
5.1.6 Quantizer SNR 358
5.1.7 Nonuniform quantizers 362
5.1.8 Companding techniques and SNR 364
5.2 Digital transmission of analog signals 370
5.2.1 Transmission through a binary channel 370
5.2.2 Evaluation of the overall SNR 371
5.2.3 Analog versus digital transmission 374
5.2.4 Regenerative and analog repeaters 376
5.3 Time division multiplexing (TDM) 381
5.4 Examples of application 382
References and further reading 387
Problems 387

6 Transmission over Dispersive Channels 393

6.1 Channel model 393
6.2 Baseband digital transmission (PAM systems) 394
6.3 Passband digital transmission (QAM systems) 399
6.3.1 Baseband equivalent of QAM systems 403
6.4 Analysis of amplitude modulated systems 404
6.4.1 Signals 404
6.4.2 PSD of noise 406
6.4.3 PSD of digital modulated signals 407
6.5 Intersymbol interference 409
6.5.1 Nyquist pulses 411
6.5.2 Eye diagram 414
6.6 Performance analysis 417
6.6.1 Symbol error probability in the absence of ISI 417
6.6.2 Symbol error probability in the presence of ISI 421
6.7 Application examples 422
6.7.1 Line codes 422
7 Elements of Information Theory, Source and Channel Coding

7.1 Information and entropy
 7.1.1 A measure for information
 7.1.2 Entropy
 7.1.3 Efficiency and redundancy
 7.1.4 Information rate of a message
 7.1.5 Typical sequences

7.2 Source coding
 7.2.1 The purpose of source coding
 7.2.2 Entropy coding
 7.2.3 Shannon’s theorem on source coding
 7.2.4 Huffman coding
 7.2.5 Arithmetic coding

7.3 Channel coding
 7.3.1 The purpose of channel coding
 7.3.2 Binary block codes
 7.3.3 Decoding criteria, and minimum distance decoding
 7.3.4 Linear codes
 7.3.5 Cyclic codes
 7.3.6 Application of channel codes

7.4 Channel capacity
 7.4.1 Information rate and capacity of a numerical channel
 7.4.2 Capacity of the AWGN channel
 7.4.3 Shannon’s theorem on channel coding

References and further reading
Problems

Index