Contents

Preface xv

1 Introduction 1
1.1 Classical and robust approaches to statistics 1
1.2 Mean and standard deviation 2
1.3 The “three-sigma edit” rule 5
1.4 Linear regression 7
 1.4.1 Straight-line regression 7
 1.4.2 Multiple linear regression 9
1.5 Correlation coefficients 11
1.6 Other parametric models 13
1.7 Problems 15

2 Location and Scale 17
2.1 The location model 17
2.2 M-estimates of location 22
 2.2.1 Generalizing maximum likelihood 22
 2.2.2 The distribution of M-estimates 25
 2.2.3 An intuitive view of M-estimates 27
 2.2.4 Redescending M-estimates 29
2.3 Trimmed means 31
2.4 Dispersion estimates 32
2.5 M-estimates of scale 34
2.6 M-estimates of location with unknown dispersion 36
 2.6.1 Previous estimation of dispersion 37
 2.6.2 Simultaneous M-estimates of location and dispersion 37
2.7 Numerical computation of M-estimates 39
 2.7.1 Location with previously computed dispersion estimation 39
 2.7.2 Scale estimates 40
 2.7.3 Simultaneous estimation of location and dispersion 41
viii CONTENTS

2.8 Robust confidence intervals and tests 41
 2.8.1 Confidence intervals 41
 2.8.2 Tests 43
2.9 Appendix: proofs and complements 44
 2.9.1 Mixtures 44
 2.9.2 Asymptotic normality of M-estimates 45
 2.9.3 Slutsky’s lemma 46
 2.9.4 Quantiles 46
 2.9.5 Alternative algorithms for M-estimates 46
2.10 Problems 48

3 Measuring Robustness 51
 3.1 The influence function 55
 3.1.1 *The convergence of the SC to the IF 57
 3.2 The breakdown point 58
 3.2.1 Location M-estimates 58
 3.2.2 Scale and dispersion estimates 59
 3.2.3 Location with previously computed dispersion estimate 60
 3.2.4 Simultaneous estimation 60
 3.2.5 Finite-sample breakdown point 61
 3.3 Maximum asymptotic bias 62
 3.4 Balancing robustness and efficiency 64
 3.5 *“Optimal” robustness 65
 3.5.1 Bias and variance optimality of location estimates 66
 3.5.2 Bias optimality of scale and dispersion estimates 66
 3.5.3 The infinitesimal approach 67
 3.5.4 The Hampel approach 68
 3.5.5 Balancing bias and variance: the general problem 70
 3.6 Multidimensional parameters 70
 3.7 *Estimates as functionals 71
 3.8 Appendix: proofs of results 75
 3.8.1 IF of general M-estimates 75
 3.8.2 Maximum BP of location estimates 76
 3.8.3 BP of location M-estimates 76
 3.8.4 Maximum bias of location M-estimates 78
 3.8.5 The minimax bias property of the median 79
 3.8.6 Minimizing the GES 80
 3.8.7 Hampel optimality 82
 3.9 Problems 84

4 Linear Regression 1 87
 4.1 Introduction 87
 4.2 Review of the LS method 91
 4.3 Classical methods for outlier detection 94
CONTENTS ix

4.4 Regression M-estimates 98
4.4.1 M-estimates with known scale 99
4.4.2 M-estimates with preliminary scale 100
4.4.3 Simultaneous estimation of regression and scale 103
4.5 Numerical computation of monotone M-estimates 103
4.5.1 The L1 estimate 103
4.5.2 M-estimates with smooth ψ-function 104
4.6 Breakdown point of monotone regression estimates 105
4.7 Robust tests for linear hypothesis 107
4.7.1 Review of the classical theory 107
4.7.2 Robust tests using M-estimates 108
4.8 *Regression quantiles 110
4.9 Appendix: proofs and complements 110
4.9.1 Why equivariance? 110
4.9.2 Consistency of estimated slopes under asymmetric errors 111
4.9.3 Maximum FBP of equivariant estimates 112
4.9.4 The FBP of monotone M-estimates 113
4.10 Problems 114

5 Linear Regression 2 115
5.1 Introduction 115
5.2 The linear model with random predictors 118
5.3 M-estimates with a bounded ρ-function 119
5.4 Properties of M-estimates with a bounded ρ-function 120
5.4.1 Breakdown point 122
5.4.2 Influence function 123
5.4.3 Asymptotic normality 123
5.5 MM-estimates 124
5.6 Estimates based on a robust residual scale 126
5.6.1 S-estimates 129
5.6.2 L-estimates of scale and the LTS estimate 131
5.6.3 Improving efficiency with one-step reweighting 132
5.6.4 A fully efficient one-step procedure 133
5.7 Numerical computation of estimates based on robust scales 134
5.7.1 Finding local minima 136
5.7.2 The subsampling algorithm 136
5.7.3 A strategy for fast iterative estimates 138
5.8 Robust confidence intervals and tests for M-estimates 139
5.8.1 Bootstrap robust confidence intervals and tests 141
5.9 Balancing robustness and efficiency 141
5.9.1 “Optimal” redescending M-estimates 144
5.10 The exact fit property 146
5.11 Generalized M-estimates 147
5.12 Selection of variables 150
5.13 Heteroskedastic errors
 5.13.1 Improving the efficiency of M-estimates
 5.13.2 Estimating the asymptotic covariance matrix under heteroskedastic errors

5.14 *Other estimates
 5.14.1 τ-estimates
 5.14.2 Projection estimates
 5.14.3 Constrained M-estimates
 5.14.4 Maximum depth estimates

5.15 Models with numeric and categorical predictors

5.16 *Appendix: proofs and complements
 5.16.1 The BP of monotone M-estimates with random X
 5.16.2 Heavy-tailed x
 5.16.3 Proof of the exact fit property
 5.16.4 The BP of S-estimates
 5.16.5 Asymptotic bias of M-estimates
 5.16.6 Hampel optimality for GM-estimates
 5.16.7 Justification of RFPE*
 5.16.8 A robust multiple correlation coefficient

5.17 Problems

6 Multivariate Analysis

6.1 Introduction

6.2 Breakdown and efficiency of multivariate estimates
 6.2.1 Breakdown point
 6.2.2 The multivariate exact fit property
 6.2.3 Efficiency

6.3 M-estimates
 6.3.1 Collinearity
 6.3.2 Size and shape
 6.3.3 Breakdown point

6.4 Estimates based on a robust scale
 6.4.1 The minimum volume ellipsoid estimate
 6.4.2 S-estimates
 6.4.3 The minimum covariance determinant estimate
 6.4.4 S-estimates for high dimension
 6.4.5 One-step reweighting

6.5 The Stahel–Donoho estimate

6.6 Asymptotic bias

6.7 Numerical computation of multivariate estimates
 6.7.1 Monotone M-estimates
 6.7.2 Local solutions for S-estimates
 6.7.3 Subsampling for estimates based on a robust scale
 6.7.4 The MVE
 6.7.5 Computation of S-estimates
CONTENTS

6.7.6 The MCD 200
6.7.7 The Stahel–Donoho estimate 200
6.8 Comparing estimates 200
6.9 Faster robust dispersion matrix estimates 204
6.9.1 Using pairwise robust covariances 204
6.9.2 Using kurtosis 208
6.10 Robust principal components 209
6.10.1 Robust PCA based on a robust scale 211
6.10.2 Spherical principal components 212
6.11 *Other estimates of location and dispersion 214
6.11.1 Projection estimates 214
6.11.2 Constrained M-estimates 215
6.11.3 Multivariate MM- and τ-estimates 216
6.11.4 Multivariate depth 216
6.12 Appendix: proofs and complements 216
6.12.1 Why affine equivariance? 216
6.12.2 Consistency of equivariant estimates 217
6.12.3 The estimating equations of the MLE 217
6.12.4 Asymptotic BP of monotone M-estimates 218
6.12.5 The estimating equations for S-estimates 220
6.12.6 Behavior of S-estimates for high p 221
6.12.7 Calculating the asymptotic covariance matrix of location M-estimates 222
6.12.8 The exact fit property 224
6.12.9 Elliptical distributions 224
6.12.10 Consistency of Gnanadesikan–Kettenring correlations 225
6.12.11 Spherical principal components 226
6.13 Problems 227

7 Generalized Linear Models 229
7.1 Logistic regression 229
7.2 Robust estimates for the logistic model 233
7.2.1 Weighted MLEs 233
7.2.2 Redescending M-estimates 234
7.3 Generalized linear models 239
7.3.1 Conditionally unbiased bounded influence estimates 242
7.3.2 Other estimates for GLMs 243
7.4 Problems 244

8 Time Series 247
8.1 Time series outliers and their impact 247
8.1.1 Simple examples of outliers’ influence 250
8.1.2 Probability models for time series outliers 252
8.1.3 Bias impact of AOs 256
CONTENTS

8.2 Classical estimates for AR models 257
 8.2.1 The Durbin–Levinson algorithm 260
 8.2.2 Asymptotic distribution of classical estimates 262

8.3 Classical estimates for ARMA models 264

8.4 M-estimates of ARMA models 266
 8.4.1 M-estimates and their asymptotic distribution 266
 8.4.2 The behavior of M-estimates in AR processes with AOs 267
 8.4.3 The behavior of LS and M-estimates for ARMA processes with infinite innovations variance 268

8.5 Generalized M-estimates 270

8.6 Robust AR estimation using robust filters 271
 8.6.1 Naive minimum robust scale AR estimates 272
 8.6.2 The robust filter algorithm 272
 8.6.3 Minimum robust scale estimates based on robust filtering 275
 8.6.4 A robust Durbin–Levinson algorithm 275
 8.6.5 Choice of scale for the robust Durbin–Levinson procedure 276
 8.6.6 Robust identification of AR order 277

8.7 Robust model identification 278
 8.7.1 Robust autocorrelation estimates 278
 8.7.2 Robust partial autocorrelation estimates 284

8.8 Robust ARMA model estimation using robust filters 287
 8.8.1 \(\tau \)-estimates of ARMA models 287
 8.8.2 Robust filters for ARMA models 288
 8.8.3 Robustly filtered \(\tau \)-estimates 290

8.9 ARIMA and SARIMA models 291

8.10 Detecting time series outliers and level shifts 294
 8.10.1 Classical detection of time series outliers and level shifts 295
 8.10.2 Robust detection of outliers and level shifts for ARIMA models 297
 8.10.3 REGARIMA models: estimation and outlier detection 300

8.11 Robustness measures for time series 301
 8.11.1 Influence function 301
 8.11.2 Maximum bias 303
 8.11.3 Breakdown point 304
 8.11.4 Maximum bias curves for the AR(1) model 305

8.12 Other approaches for ARMA models 306
 8.12.1 Estimates based on robust autocovariances 306
 8.12.2 Estimates based on memory-\(m \) prediction residuals 308

8.13 High-efficiency robust location estimates 308

8.14 Robust spectral density estimation 309
 8.14.1 Definition of the spectral density 309
 8.14.2 AR spectral density 310
 8.14.3 Classic spectral density estimation methods 311
 8.14.4 Prewhitening 312
CONTENTS

8.14.5 Influence of outliers on spectral density estimates 312
8.14.6 Robust spectral density estimation 314
8.14.7 Robust time-average spectral density estimate 316
8.15 Appendix A: heuristic derivation of the asymptotic distribution of M-estimates for ARMA models 317
8.16 Appendix B: robust filter covariance recursions 320
8.17 Appendix C: ARMA model state-space representation 322
8.18 Problems 323

9 Numerical Algorithms 325
9.1 Regression M-estimates 325
9.2 Regression S-estimates 328
9.3 The LTS-estimate 328
9.4 Scale M-estimates 328
9.4.1 Convergence of the fixed point algorithm 328
9.4.2 Algorithms for the nonconcave case 330
9.5 Multivariate M-estimates 330
9.6 Multivariate S-estimates 331
9.6.1 S-estimates with monotone weights 331
9.6.2 The MCD 332
9.6.3 S-estimates with nonmonotone weights 333
9.6.4 *Proof of (9.25) 334

10 Asymptotic Theory of M-estimates 335
10.1 Existence and uniqueness of solutions 336
10.2 Consistency 337
10.3 Asymptotic normality 339
10.4 Convergence of the SC to the IF 342
10.5 M-estimates of several parameters 343
10.6 Location M-estimates with preliminary scale 346
10.7 Trimmed means 348
10.8 Optimality of the MLE 348
10.9 Regression M-estimates 350
10.9.1 Existence and uniqueness 350
10.9.2 Asymptotic normality: fixed X 351
10.9.3 Asymptotic normality: random X 355
10.10 Nonexistence of moments of the sample median 355
10.11 Problems 356

11 Robust Methods in S-Plus 357
11.1 Location M-estimates: function Mestimate 357
11.2 Robust regression 358
11.2.1 A general function for robust regression: lmRob 358
11.2.2 Categorical variables: functions as.factor and contrasts 361
11.2.3 Testing linear assumptions: function \texttt{rob.linear.test} 363
11.2.4 Stepwise variable selection: function \texttt{step} 364

11.3 Robust dispersion matrices 365
11.3.1 A general function for computing robust location–dispersion estimates: \texttt{covRob} 365
11.3.2 The SR-\(\alpha\) estimate: function \texttt{cov.SRocke} 366
11.3.3 The bisquare S-estimate: function \texttt{cov.Sbic} 366

11.4 Principal components 366
11.4.1 Spherical principal components: function \texttt{prin.comp.rob} 367
11.4.2 Principal components based on a robust dispersion matrix: function \texttt{princomp.cov} 367

11.5 Generalized linear models 368
11.5.1 M-estimate for logistic models: function \texttt{BYlogreg} 368
11.5.2 Weighted M-estimate: function \texttt{WBYlogreg} 369
11.5.3 A general function for generalized linear models: \texttt{glmRob} 370

11.6 Time series 371
11.6.1 GM-estimates for AR models: function \texttt{ar.gm} 371
11.6.2 \(F_t\)-estimates and outlier detection for ARIMA and REGARIMA models: function \texttt{arima.rob} 372

11.7 Public-domain software for robust methods 374

12 Description of Data Sets 377

Bibliography 383

Index 397