Contents

Preface XIX
Acknowledgments XXI
A Note on Units XXIII

I Overview of Volume I 1

1 **Introduction** 3
References 5

II Fission and Fusion Energy 7

2 **Fission Power Production** 9
2.1 Overview 9
2.2 Basic Health Physics Considerations 9
2.3 Fission Reactor History 13
2.4 Generation II Power Reactors 13
2.4.1 Pressurized Water Reactors 14
2.4.1.1 Core 15
2.4.1.2 Reactor Vessel 15
2.4.1.3 Primary Coolant System 15
2.4.1.4 Steam System 16
2.4.1.5 Reactor Control and Protection Systems 16
2.4.1.6 Engineered Safety Features 17
2.4.2 Boiling Water Reactors 17
2.4.2.1 BWR Reactor Assembly 18
2.4.2.2 BWR Reactor Core 18
2.4.3 CANDU Reactors 18
2.4.3.1 General Description 18
2.4.3.2 Control Systems 19
2.4.3.3 Steam System 19

Health Physics in the 21st Century, Joseph John Bevelacqua
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40822-1
2.16 Normal Operations 58
 2.16.1 Health Physics 59
 2.16.2 Maintenance 59
 2.16.3 Operators 60
 2.17 Outage Operations 60
 2.18 Abnormal Operations 61
 2.19 Emergency Operations 61

3 Fusion Power Production 71
 3.1 Overview 71
 3.2 Fusion Process Candidates 72
 3.3 Physics of Plasmas 73
 3.4 Plasma Properties and Characteristics 75
 3.5 Plasma Confinement 79
 3.6 Overview of an Initial Fusion Power Facility 81
 3.7 ITER 83
 3.8 ITER Safety Characteristics 84
 3.9 General Radiological Characteristics 85
 3.10 Accident Scenarios/Design Basis Events 87
 3.10.1 Loss-of-Coolant Accidents 87
 3.10.2 Loss-of-Flow Accidents 87
 3.10.3 Loss-of-Vacuum Accidents 88
 3.10.4 Plasma Transients 88
 3.10.5 Magnet Fault Transients 89
 3.10.6 Loss of Cryogen 89
 3.10.7 Tritium Plant Events 89
 3.10.8 Auxiliary System Accidents 90
 3.11 Radioactive Source Term 90
 3.12 Beyond Design Basis Events 90
 3.13 Assumptions for Evaluating the Consequences of Postulated
 ITER Events 90
 3.14 Caveats Regarding the ITER Technical Basis 92
 3.15 Overview of Fusion Energy Radiation Protection 94
 3.16 D-T Systematics 95
 3.17 Ionizing Radiation Sources 97
 3.18 Nuclear Materials 100
 3.19 External Ionizing Radiation Hazards 100
 3.19.1 Alpha Particles 100
 3.19.2 Beta Particles 101
 3.19.3 Photons 101
 3.19.4 Neutrons 102
 3.19.4.1 Vanadium Activation – Vacuum Vessel Liner 103
 3.19.4.2 Activation of Stainless Steel – Vacuum Vessel Structural Material 104

References 67
4.3.1.7 SNS Design Decisions 139
4.3.1.8 Radiation Protection Regulations 139
4.3.1.9 Health Physics Considerations 140
4.3.2 Electron–Positron Colliders – Existing Machines 140
4.3.2.1 Overview 140
4.3.2.2 Electromagnetic Cascade Showers 143
4.3.2.3 External Bremsstrahlung 145
4.3.2.4 Photoneutron Production 146
4.3.2.5 Muons 146
4.3.2.6 Synchrotron Radiation 147
4.3.2.7 Radiation Levels at the Large Electron–Positron Collider 149
4.3.2.8 LEP Radiation Levels Outside the Shielding 149
4.3.2.9 Radiation Levels Inside the LEP Machine Tunnel 149
4.3.3 Hadron Colliders 150
4.3.3.1 Large Hadron Collider 150
4.3.3.1.1 CMS 151
4.3.3.1.2 ATLAS 151
4.3.3.1.3 LHCb 151
4.3.3.1.4 TOTEM 152
4.3.3.1.5 ALICE 152
4.3.3.1.6 Antiprotons 152
4.3.3.1.7 Proton Reactions 154
4.3.3.1.8 Neutrons 154
4.3.3.1.9 Muons 154
4.3.3.1.10 Hadronic (Nuclear) Cascade 154
4.3.3.1.11 Heavy Ions 156
4.3.3.1.12 Synchrotron Radiation 156
4.3.3.1.13 High-Power Beam Loss Events 157
4.3.4 Heavy-Ion Colliders 157
4.3.4.1 Examples of RHIC Radiological Hazards 159
4.3.4.2 Radiation Protection Philosophy 159
4.3.4.3 Personnel Safety Envelope 159
4.3.4.4 Collider Safety Envelope Parameters 159
4.3.4.5 Beam Loss Control 160
4.3.4.6 Particle Accelerator Safety System 160
4.4 Planned Accelerator Facilities 160
4.4.1 International Linear Collider 161
4.4.1.1 Electron Source/LINAC 161
4.4.1.2 Positron Source/LINAC 161
4.4.1.3 Electron-Damping Ring 162
4.4.1.4 Positron-Damping Ring 162
4.4.1.5 Main LINACs 162
4.4.1.6 Interaction Area 162
4.4.1.7 Evolving ILC Design 162
4.4.1.8 ILC Health Physics 163
6.6.4 Solar Flare Radiation or Solar Particle Events 259
6.7 Calculation of Absorbed and Effective Doses 260
6.8 Historical Space Missions 260
6.8.1 Low-Earth Orbit Radiation Environment 260
6.8.2 The Space Radiation Environment Outside Earth’s Magnetic Field 261
6.8.3 Radiation Data from Historical Missions 263
6.8.4 Gemini 263
6.8.5 Skylab 265
6.8.6 Space Transport Shuttle 265
6.8.7 Mir Space Station 266
6.8.8 International Space Station 266
6.8.9 Apollo Lunar Missions 266
6.8.10 Validation of LEO and Lunar Mission Absorbed Dose Rates 267
6.9 LEO and Lunar Colonization 268
6.10 GCR and SPE Contributions to Manned Planetary Missions 269
6.10.1 GCR Doses 269
6.10.2 SPE Doses 270
6.10.3 Planetary Mission to Mars 275
6.10.4 Mars Orbital Dynamics 275
6.10.5 Overview of Mars Mission Doses 278
6.10.6 Oak Ridge National Laboratory (ORNL) Mars Mission 278
6.10.7 Trapped Radiation Contribution 278
6.10.8 GCR Contribution 278
6.10.9 SPE Contribution 279
6.10.10 Mars Mission Doses 279
6.11 Other Planetary Missions 280
6.11.1 Planetary Atmospheric Attenuation 285
6.12 Mars and Outer Planet Mission Shielding 286
6.13 Electromagnetic De
fl
ector Physics 288
6.13.1 EM Field De
fl
ector Physics 289
6.13.2 Case I – Deflection Using a Static Magnetic Field 291
6.13.3 Case II – Deflection Using a Static Electric Field 291
6.13.4 Engineering Considerations for EM Field Generation 295
6.14 Space Radiation Biology 295
6.15 Final Thoughts 296
Problems 296
References 300

7 Deep Space Missions 303
7.1 Introduction 303
7.2 Stellar Radiation 303
7.2.1 Origin of Stars 304
7.2.2 Low Mass Stars 304
7.2.3 High Mass Stars 305
Answers and Solutions

<table>
<thead>
<tr>
<th>Solutions for Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>353</td>
</tr>
<tr>
<td>3</td>
<td>368</td>
</tr>
<tr>
<td>4</td>
<td>384</td>
</tr>
<tr>
<td>5</td>
<td>403</td>
</tr>
<tr>
<td>6</td>
<td>421</td>
</tr>
<tr>
<td>7</td>
<td>435</td>
</tr>
</tbody>
</table>

Appendixes

<table>
<thead>
<tr>
<th>Significant Events and Important Dates in Physics and Health Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>463</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production Equations in Health Physics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>465</td>
</tr>
<tr>
<td>Theory</td>
<td>465</td>
</tr>
<tr>
<td>Examples</td>
<td>468</td>
</tr>
<tr>
<td>Activation</td>
<td>468</td>
</tr>
<tr>
<td>Demineralizer Activity</td>
<td>469</td>
</tr>
<tr>
<td>Surface Deposition</td>
<td>469</td>
</tr>
<tr>
<td>Release of Radioactive Material into a Room</td>
<td>470</td>
</tr>
<tr>
<td>Conclusions</td>
<td>471</td>
</tr>
<tr>
<td>References</td>
<td>471</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Health Physics Relationships</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>482</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal Dosimetry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>483</td>
</tr>
<tr>
<td>Overview of Internal Dosimetry Models</td>
<td>483</td>
</tr>
<tr>
<td>MIRD Methodology</td>
<td>485</td>
</tr>
<tr>
<td>ICRP Methodology</td>
<td>487</td>
</tr>
<tr>
<td>Biological Effects</td>
<td>487</td>
</tr>
<tr>
<td>ICRP 26/30 and ICRP 60/66 Terminology</td>
<td>490</td>
</tr>
<tr>
<td>ICRP 26 and ICRP 60 Recommendations</td>
<td>490</td>
</tr>
<tr>
<td>Calculation of Internal Dose Equivalents Using ICRP 26/30</td>
<td>491</td>
</tr>
<tr>
<td>Calculation of Equivalent and Effective Doses Using ICRP 60/66</td>
<td>493</td>
</tr>
<tr>
<td>Model Dependence</td>
<td>495</td>
</tr>
<tr>
<td>Conclusions</td>
<td>495</td>
</tr>
<tr>
<td>References</td>
<td>495</td>
</tr>
</tbody>
</table>