Figures are indicated by “f” following the page number.
Page numbers for definitions of key terms are in **boldface**.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggressive options trading, 124</td>
<td>Beta (option valuation), 138–139</td>
</tr>
<tr>
<td>American Stock Exchange (AMEX), 127</td>
<td>Black, Fisher, 4, 141</td>
</tr>
<tr>
<td>arbitrage-free trades, 12–13, 17–18</td>
<td>volatility forecasts and, 69–70</td>
</tr>
<tr>
<td>ARCH model of volatility, 100</td>
<td>on volatility trading, 86–87</td>
</tr>
<tr>
<td></td>
<td>Black-Scholes model, 129–132, <strong>141–142</strong></td>
</tr>
<tr>
<td></td>
<td>assumptions of, 130–131</td>
</tr>
<tr>
<td></td>
<td>formula for, 129–130</td>
</tr>
<tr>
<td></td>
<td>history of, 3–4</td>
</tr>
</tbody>
</table>
normal distribution in, 20–21
probability in, 10
variations in break-even price, 39
volatility trading in, 85–86
weaknesses of, 131–132
break-even price, 38–39

C
calendar spread, 98, 133–135
calls, 25, 84, 117, 145
Canadian Venture Exchange, 128
cash instruments, 117
Chicago Board Options Exchange (CBOE), 115, 127
commissions, 101
cones, volatility, 96–98, 97f
covered position, 89

D
daily volatility, 44–47, 46f, 48f
delta-neutral hedging, 84–87, 90, 100, 147
delta-neutral position, 83, 90

Delta (option valuation), 137–138
derivatives, 116, 145
deviation, 21–23, 35–39, 142
distribution, 19–29, 142
assumptions and options pricing, 23–29,
26f–28f
lognormal, 59–61, 60f, 61f, 144
distribution curve, 22, 26–29, 142–143
limitations of normal curve, 58–59, 58f
mean, 22–23, 22f
normal, 19–21, 20f
in pricing models, 19–23, 20f
standard deviation, 22–23, 22f
symmetry in, 29–30, 30f
dynamic hedging, 84–85, 90, 147

E
efficient markets hypothesis, 75–76
exchanges, option-trading, 90, 102, 127–128
exercise price, 23–24, 24f, 30, 38, 62–63, 71–72
definition, 118
as price model input, 5, 6f
exit strategies, 125
expiration date, 13, 117–118, 120, 133–134, 138, 145–146

F
forecast volatility, 69–70, 77, 81, 143
forward price, 39, 41
future volatility, 68–70, 77, 81, 83, 143
Black-Scholes model and, 86–88
predicting, 93–96

G
Gamma (option valuation), 138
GARCH (Generalized Auto-Regressive Conditional Heteroscedasticity)
models, 99–100
Greens of option valuation, 137–139

H
historical volatility, 69–70, 77, 81, 87, 96, 142–143
determining, 70–72
price valuations and, 73–77, 74f
in-the-money option, 25, 123–124
interest rate, 5, 6f, 11, 15, 40, 71, 73, 137–138
International Securities Exchange (ISE), 127–128

I
implied volatility, 81–83, 87, 137–138, 142–144
determining, 70–72
price valuations and, 73–77, 74f
in-the-money option, 25, 123–124
interest rate, 5, 6f, 11, 15, 40, 71, 73, 137–138
International Securities Exchange (ISE), 127–128

L
LEAPs (Long-term Equity Anticipation securities), 133
lognormal distribution, 59–61,

Index
margin requirements, 101–102
Markowitz, Harry, 75
mean, 144
    as break-even price, 38–39
    in normal distribution, 21–23, 22f
mean reversion, 94–96
Merton, Robert, 4
moderate options trading, 124
momentum, 95–96
money management, 125–126
Montreal Stock Exchange, 128

naked position, 88–90
Nobel Prize in Economics, 4

options, 115–128
    classes of, 117–118, 145
    as derivatives, 116
    European vs. American, 13
    expiration date, 118
    premium, 118–119, 120–121
    pricing (See options evaluation and pricing)
    terminology, 118–119
    trading (See options trading)
    underlying assets, 116, 118–119
    options evaluation and pricing. See also pricing models
distribution assumptions in, 23–29, 24f
exercise price, 5, 6f, 23–24, 24f
formula for, 120–121
Greens of valuation, 137–139
hedging strategies, 82–84
lognormal distribution in, 59–61, 60f, 61f
opposing market positions, 83–84
overcoming subjectivity in, 10–16
strike price, 118, 123–124
symmetry in distribution curves, 29–31, 30f
theoretical value in, 4, 14–16, 15f
universality of principles, 1
options trading
calendar spread in, 133–135
exit strategies, 125
goals and investment strategies, 122–123
history of, 115–116
leading exchanges, 127–128
money management, 125–126
nonsymmetrical payoff diagram, 14, 14f
strategic risks and strike price, 123–124
out-of-the-money option, 25, 124

P
Pacific Exchange (PCX), 128
Philadelphia Stock Exchange

(PLX), 128
premium
definition, 118–119
key elements of, 120–121
pricing models, 145. See also
Black-Scholes model
arbitrage-free assumptions in, 17–18
correcting valuations, 72–77, 74f
elements of, 4–6, 6f
essential volatility adjustments, 57–59
implied volatility in, 73–77, 74f
marketplace variations from, 62–63, 107–112, 109f
mean as break-even price, 38–39
normal distribution in, 19–23, 20f
probabilities in, 10, 16–17
standard deviation in, 40–41
underlying logic of, 9–10
value for options trading,
primary instruments, 117
probability, 9–33, 146
calculation of, 10–16
expected return, 10–11, 11f
infinite numbers in, 18–20, 19f
normal distribution, 19–23, 20f
in standard deviations, 36, 37f
theoretical value vs. market price, 14–16, 15f
total return, 12, 12f
use in pricing models, 16–17
value of call at expiration, 13–14, 14f
puts, 25, 30, 62, 83, 117–118, 122–123, 145

security price, 5, 6f, 75
serial correlations, 94, 95
Sharpe, William F., 75
S&P 500 Index (SPX)
real-world volatility vs. theoretical models, 107–109, 109f
volatility patterns, 91–92, 92f
standard deviation
annualized, 41–42, 42f
definition, 36
in normal distribution, 21–23, 22f
in pricing models, 40
probabilities in, 36, 37f
as volatility, 40
volatility assessment and, 35–54
in volatility time period adjustments, 44–49, 48f–49f, 50
strike price, 25, 28, 117–118, 120–121, 123–124
subjectivity, in options evaluation, 10–16

R
Random Walk Theory, 75
Rho (option valuation), 138

S
Scholes, Myron, 4, 141
T
term structure (volatility), 96–98, 97f
theoretical value, 4, 14–16, 15f, 52, 55, 71, 73, 146
Theta (option valuation), 138
time periods, 44–49, 48f–49f, 50
time spread, 98, 133–135
time to expiration, 5, 6f
Tobin, James, 75
Toronto Stock Exchange, 128

U
underlying asset (underlier), 89, 116, 118–119

V
valuation, 1, 6, 63, 67, 72, 74, 83, 96, 137, 146
VARIMA (Vector Auto-Regressive Integrated Moving Average), 100
Vega (option valuation), 137–138
volatility, 1, 146–147
adjustments to input, 57–59
analysis of, 55–57
assessment of, 35–54, 77, 147
characteristics, 93–96
charts and charting, 91–93, 92f
cones, 96–98, 97f
daily, 45–47, 46f, 48f, 50
fluidity in, 42–44
forecast, 69–70, 143
future (See future volatility)
historical, 69, 143
implied (See implied volatility)
levels of, 35–54
mean reversion in, 94–95, 96
momentum in, 95–96
monthly, 48, 49f
predicting, 93–96
prediction models, 98–101
in price models, 5–6, 6f
probability and, 9–33
serial correlations in, 94–95
standard deviation as, 40, 42f
time period adjustments,  
   44–49, 48f–49f, 50  

  types of, 67–79  
  verifying, 51–52  
  weekly, 47–48, 49f, 50  

volatility trading, 81–105, 147  
   Black-Scholes model and, 85–88  
   covered position, 89  
   dynamic (delta-neutral)  
      hedging, 84–86, 90, 147  
   fundamentals of, 82–84  
   key steps in, 85  
   margin requirements and commissions, 101–102  
   naked position in, 89–90  
   opposing market position in, 83–84  
   risks of, 88–91  
   volatility prediction models, 98–101  

W  
   weekly volatility, 47–48, 49f, 50