Index

Bold indicates appearing in a chapter summary; **bold italic** indicates appearing in a figure.

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptor site</td>
<td>21</td>
</tr>
<tr>
<td>accuracy of selection ((r_{ae}))</td>
<td>236</td>
</tr>
<tr>
<td>acrocentric chromosome</td>
<td>3</td>
</tr>
<tr>
<td>activator</td>
<td>22, 37</td>
</tr>
<tr>
<td>additive</td>
<td>219, 220</td>
</tr>
<tr>
<td>genetic variance ((V_c))</td>
<td>221–2, 228, 268, 281, 284, 285</td>
</tr>
<tr>
<td>relationship</td>
<td>211, 223, 238</td>
</tr>
<tr>
<td>adenine</td>
<td>12, 13, 14</td>
</tr>
<tr>
<td>allele</td>
<td>24–5, 37</td>
</tr>
<tr>
<td>frequency</td>
<td>281, 288</td>
</tr>
<tr>
<td>multiple</td>
<td>25</td>
</tr>
<tr>
<td>allele-specific amplification (ASA)</td>
<td>63</td>
</tr>
<tr>
<td>oligo (ASO)</td>
<td>63</td>
</tr>
<tr>
<td>alpaca karyotype</td>
<td>4</td>
</tr>
<tr>
<td>amino acid</td>
<td>16, 17</td>
</tr>
<tr>
<td>motif</td>
<td>22</td>
</tr>
<tr>
<td>anastomosis</td>
<td>114, 115</td>
</tr>
<tr>
<td>ancestor</td>
<td>207</td>
</tr>
<tr>
<td>aneuploidy</td>
<td>104, 119</td>
</tr>
<tr>
<td>animal</td>
<td></td>
</tr>
<tr>
<td>cloning</td>
<td>275–6, 279</td>
</tr>
<tr>
<td>model</td>
<td>239</td>
</tr>
<tr>
<td>annealing</td>
<td>56, 56, 57</td>
</tr>
<tr>
<td>anthelmintics resistance to</td>
<td>186</td>
</tr>
<tr>
<td>antibiotics resistance to</td>
<td>186–7</td>
</tr>
<tr>
<td>antibody</td>
<td>158, 159–60, 159, 170</td>
</tr>
<tr>
<td>diversity</td>
<td>160, 170</td>
</tr>
<tr>
<td>anticipation, genetic</td>
<td>95</td>
</tr>
<tr>
<td>anticoding strand, of DNA</td>
<td>20</td>
</tr>
<tr>
<td>antecodon</td>
<td>17</td>
</tr>
<tr>
<td>antigen</td>
<td>158</td>
</tr>
<tr>
<td>red-cell</td>
<td>160–62</td>
</tr>
<tr>
<td>antigen-binding site (ABS)</td>
<td>of MHC, 165</td>
</tr>
<tr>
<td>antigenic variation</td>
<td>192</td>
</tr>
<tr>
<td>in trypanosomes</td>
<td>183</td>
</tr>
<tr>
<td>antisense</td>
<td>226</td>
</tr>
<tr>
<td>RNA, 80, 83</td>
<td></td>
</tr>
<tr>
<td>strand, of DNA, 20</td>
<td>20</td>
</tr>
<tr>
<td>technology</td>
<td>80–81</td>
</tr>
<tr>
<td>artificial insemination (AI)</td>
<td>270–71, 278</td>
</tr>
<tr>
<td>selection</td>
<td>127, 230</td>
</tr>
<tr>
<td>assembly</td>
<td></td>
</tr>
<tr>
<td>genome</td>
<td>35</td>
</tr>
<tr>
<td>sequence</td>
<td>74–6</td>
</tr>
<tr>
<td>autosomal</td>
<td></td>
</tr>
<tr>
<td>dominant inheritance</td>
<td>151–2</td>
</tr>
<tr>
<td>recessive inheritance</td>
<td>152</td>
</tr>
<tr>
<td>autosome</td>
<td>3, 4</td>
</tr>
<tr>
<td>BAC</td>
<td>51</td>
</tr>
<tr>
<td>fingerprint map</td>
<td>73</td>
</tr>
<tr>
<td>library</td>
<td>73</td>
</tr>
<tr>
<td>backcross</td>
<td>70, 256, 259, 260, 265</td>
</tr>
<tr>
<td>bacterial artificial chromosome (BAC)</td>
<td>51</td>
</tr>
<tr>
<td>bacteriophage lambda, 48, 48, 49</td>
<td></td>
</tr>
<tr>
<td>banding of chromosomes, 3–5</td>
<td>C, 4, DAPI/AMD, 41</td>
</tr>
<tr>
<td>G, 4, 39</td>
<td>GBG, 4</td>
</tr>
<tr>
<td>GTG, 4, 40, 42</td>
<td>Q, 4</td>
</tr>
<tr>
<td>R, 4</td>
<td>RBA, 4</td>
</tr>
<tr>
<td>RBG, 4, 43, 44</td>
<td>Barr body, 32–3, 33, 34, 103 base, in DNA, 12</td>
</tr>
<tr>
<td>pair (bp), 14</td>
<td>population, 211–2</td>
</tr>
<tr>
<td>substitution</td>
<td></td>
</tr>
<tr>
<td>non-synonymous</td>
<td>167</td>
</tr>
<tr>
<td>synonymous</td>
<td>167</td>
</tr>
<tr>
<td>best linear unbiased prediction; see BLUP</td>
<td></td>
</tr>
<tr>
<td>biochemical screening</td>
<td>297, 306</td>
</tr>
<tr>
<td>biotechnology</td>
<td>270–79</td>
</tr>
<tr>
<td>bivalent in meiosis</td>
<td>7</td>
</tr>
<tr>
<td>blood-group system</td>
<td>160–62, 170</td>
</tr>
<tr>
<td>blot</td>
<td>dot, 63</td>
</tr>
<tr>
<td>reverse dot</td>
<td>63</td>
</tr>
<tr>
<td>blotting</td>
<td></td>
</tr>
<tr>
<td>northern</td>
<td>58</td>
</tr>
<tr>
<td>Southern</td>
<td>58, 59</td>
</tr>
<tr>
<td>south-western</td>
<td>58</td>
</tr>
<tr>
<td>western</td>
<td>58</td>
</tr>
<tr>
<td>blowfly, sheep</td>
<td>184–6</td>
</tr>
<tr>
<td>blunt end</td>
<td>46, 81</td>
</tr>
<tr>
<td>BLUP</td>
<td>238–9, 240, 241, 246</td>
</tr>
<tr>
<td>bottleneck</td>
<td>population, 134</td>
</tr>
<tr>
<td>breed</td>
<td></td>
</tr>
<tr>
<td>comparison</td>
<td>230–31</td>
</tr>
<tr>
<td>standards</td>
<td>303</td>
</tr>
<tr>
<td>structure</td>
<td>249–53</td>
</tr>
<tr>
<td>substitution</td>
<td>263–4</td>
</tr>
<tr>
<td>breeding</td>
<td></td>
</tr>
<tr>
<td>objective</td>
<td>240, 247</td>
</tr>
<tr>
<td>programme, captive</td>
<td>287, 289</td>
</tr>
<tr>
<td>scheme</td>
<td></td>
</tr>
<tr>
<td>closed nucleus</td>
<td>249–50, 251, 253</td>
</tr>
<tr>
<td>co-operative</td>
<td>252, 253</td>
</tr>
<tr>
<td>group</td>
<td>252, 253</td>
</tr>
<tr>
<td>open nucleus</td>
<td>250–51, 253</td>
</tr>
<tr>
<td>value (A)</td>
<td>219, 227, 228</td>
</tr>
<tr>
<td>estimated</td>
<td>235–42, 246, 247, 301</td>
</tr>
<tr>
<td>variance ((V_c))</td>
<td>221–2, 228</td>
</tr>
<tr>
<td>true</td>
<td>235</td>
</tr>
</tbody>
</table>
broad-sense heritability, 221
build, of genome sequence assembly, 75

CAAT box, 19, 20
calibration phase, of GWS, 245
callipyge, 101, 202
cancer, and chromosomal aberrations, 112
candidate
 for artificial selection, 221–2, 236–42, 246
gene, 96, 298
cap site, 21
capping, of RNA, 19
captive breeding programme, 287, 289

Carwell, 202
cat
 coat colour, 32
gene sequenced, 75
 karyotype, 4, 39
tortoiseshell, 105
cattle
 chromosome, 72
 comparative map with human, 75
gene sequenced, 75
 idiogram, 6
 karyotype, 4, 5
 RH maps, 72
 transgenic, 78
cDNA, 51–3, 57, 58, 60, 64, 81, 85, 97
 library, 51, 52, 53, 81, 274
 centimorgan, see cM
central test, 244
centric
 fission, 111, 119
 fusion translocation, 110, 111, 118, 120
 centromere, 1, 7, 8, 10, 11, 12, 37
 chain-terminating sequencing, 53, 54
 checkerboard, 9, 25, 26, 27, 30, 31
 chiasma(ta), 7, 8
 chicken
 sexing, 202–3, 203
gene sequenced, 75
 karyotype, 4, 41
chimeric, 114
chimerism, XX/XY, 114
chip, 64
 expression, 53, 60, 82, 227
 SNP, 69, 70, 82, 83, 96, 97, 136, 147, 156, 191, 204, 226, 244, 245, 280, 306
chromatid, 1, 7, 8, 10, 11, 12, 28, 37
 non-sister, 28, 29
 sister, 28
chromosomal aberrations, 103–20
 aneuploidy, 104, 119
 deletion, 111–2, 116, 118, 119
 insertion, 120
 list of, 119–20
 monosomy, 103
 trisomy, 103, 119
 intersex, 117, 118
chromosome painting, 72
chrosonome, 1–4, 37
 acrocentric, 3, 4
 banding, 3–5
 metacentric, 3, 4
 p arm, 3
 painting, 72, 72
 q arm, 3
 sub-metacentric, 3
cis-acting, 202
citrullinaemia, in cattle, 85
cleavage site, 46, 47, 48
clinical screening, 294
cloning
 animals, 275–6, 279
 DNA, 49–51, 81
 embryo, 277–8, 277
closed-nucleus breeding scheme, 249–50, 251, 253
closure, to a candidate’s breeding value, 236–8, 246
cM, 31, 32, 74, 163
CNV, 69–70, 198–9, 227
coancestry, 210
 control of inherited disorders, 291–306
 co-operative breeding scheme, 252, 253
copy DNA, see cDNA
copy number
 polymorphism (CNP), 69–70
 variation, see CNV
corrective surgery, impact of, 293
correlated
 response to selection, 239–40, 246
correlation
 genetic (rG), 224, 226, 228, 246
 genetic, and G × E, 233, 233
 phenotypic (rP), 224, 226, 228
cos ends, 49
cosmid, 49
CpG island, 35
criteria, selection, 235, 241
cross-bred, 254
crosses, comparison of, 258–60
crossing, 253
 backcross, 256, 259, 260, 265
 four-way, 257, 259, 260, 265, 272, 277, 278
crossing (continued)
to produce a synthetic, 260–61, 265
regular, 254–60, 264, 265, 304
rotational, 257–8, 259, 260, 265
specific, 255–7, 265
three-way, 256, 259, 260, 265,
272, 277, 278
two-way, 255, 259, 260, 265,
272, 277, 278
crossing-over, 29, 30, 31, 37
in meiosis, 7
cross-over, 28, 29, 71
cross-resistance, 185
culling, 294
levels, independent, 242
cycle sequencing, 58
cytogenetics, 1–4, 103–20
diversity
allelic, 281, 288
antibody, 160, 170
development of DNA, 47, 48, 50, 59, 61, 81
partial, 51, 52
diploid, 3, 37
direct
comparison, 231
relationship, 208–9, 214
repeat, 36
disequilibrium, linkage, see LD
disjunction, 7, 8, 10, 11, 12, 108, 111
disorders, single-locus, genetic
control of, 294–99
diversity
allelic, 281, 288
antibody, 160, 170
DNA cloning, 49–51, 50, 81
DNA, 11–16, 37
expression chip, 58, 60
fingerprint, 64–8, 66, 67, 204, 205
gene, 164
length in a diploid cell, 15
ligase, 15, 49, 50
markers, in control of single-
locus disorders, 297–8, 306
polymerase, 14, 51, 52, 54, 56, 82
repetitive, 36, 37
replication, 14, 15
sequencing, 53–5
single-copy, 35
types of, 35–6
unique, 35
dog
genome sequenced, 75
karyotype, 4, 40
Dolly, 275, 287
dominance
development (D), 219, 227
variance (Vd), 221–2, 228
incomplete, 87
dominant, 86, 90
disorder, 97
gene, selection against, 127–8
donkey, karyotype, 4
donor site, 21
dosage compensation, 32, 34, 37
dot blot, 63
double
helix, 14, 14, 37
muscling, 201–2
double-stranded RNA, see dsRNA
drift, genetic, 123, 124, 133–4, 135,
137, 242–3, 244, 247, 285, 286
drug metabolism, 172, 177
dsRNA, 81, 83
dwarf poultry, 202
debelver, 19, 19, 22
equilibrium
gene frequency, selection/
mutation balance, 128, 130
gametic, 135
linkage, 135
EST, 53
estimated breeding value, see EBV
eukaryote, 16
eumelanin, 195
euploidy, 104
evolution of karyotypes, 113
exon, 19, 21
expected heterozygosity, 281, 288
expressed sequence tag, see EST
expression
chip (microarray), 53, 58, 60, 82,
227
library, 76
QTL, 226
vector, 76
expressivity, variable, 145–7
ex-situ conservation programme,
287
extension, in PCR, 56, 58, 57
5’
cap, 21
end of a DNA segment, 12, 13,
14, 15, 16, 18, 19, 21, 36
F1 (first filial), 255
generation, 70
F2 generation, 70
facial eczema, in sheep, 176–7
FAO, 189, 232, 280, 286, 287
FACS, 71
fingerprint, DNA, 64–8, 66, 67,
204, 205
FISH, 72, 72
fish, transgenic, 78
fission, centric, 111, 119
fitness, 127
relative, 127
fixation of a gene in a population, 134
fluorescence in situ hybridization, see FISH
fluorescence-activated cell sorting, see FACS
Food and Agriculture Organization of the United Nations, see FAO
founder effect, 134
four-way cross, 257, 259, 260, 265, 272, 277, 278
fragile site, 112, 119
frameshift mutation, 24, 94, 95
freemartin, 114–5, 118
frequency distribution, 217, 218
fundamental number, of chromosomes, 113
fusion, centric, 110
G × E, 232–3, 232, 233
gametic
disequilibrium, see LD equilibrium, 135
GC box, 19, 20
GenBank, 55
gene, 18–23, 19, 24–5
cloning, 49
construct, 77
frequency, 121–2
jumping, 36
knockout, 79
mapping, 70–74
mutation, 23
regulation, 22–3, 81
replacement, targeted, 78
split, 20–22
structural, 35, 37
therapy, 78, 300
generation interval (L), 243, 247, 286
genes
number of, 27, 35, 70, 76, 92, 130, 302
size of, 21
genetic
anticipation, 95, 155
code, 15–16, 17, 18
control
of multifactorial disorders, 300–302, 306
of single-locus disorders, 294–99
correlation (rG), 224, 226, 228, 246
and G × E, 233, 233
distance among populations, 282, 288
diversity
conservation of, 286–8, 289
loss of, 284–6
measurement of, 280–83
drift, 123, 124, 133–4, 135, 137, 242–3, 244, 247, 285, 286
effect of non-genetic control of inherited disorders, 293–4, 305
panemics, 226
heterogeneity of disease, 87–90, 97, 155
trend, 239
variance (Vg), 221
genome, 3
assembly, 35, 74–6
genome-wide association (GWA) analysis, see GWA scan, 228
selection, see GWS
genomic
library, 51, 52, 81
selection; see GWS
genotypic
discrepancy, see L × G
variance (Vg), 227
geno-

typic
value (G), 218, 227
variance (Vd), 221
germ-line mutation, 24
Global Animal Genetic Resources Programme, of FAO, 287
goat
karyotype, 4, 43
transgenic, 78
gonal disorder, 117, 118
grading-up, 261–4, 265, 304
group breeding scheme, 252, 253
growth factor, 196
GT-AC rule, 21
guanine, 12, 13, 14
GWA, 147, 245
GWS, 46, 228, 244–6, 247
GWA phase, 245
prediction phase, 245
haemophilia in dogs, 93
halothane, adverse reaction to, 173, 177
haplodiploidy, 7, 37
haploidy, 106, 118
haplotype, 135–6, 245
MHC, inheritance of, 167, 167
Hardy-Weinberg frequencies, 123–6, 136
law, 123–6, 136
and multiple alleles, 125
and recessive genes, 124–5
and X-linked genes, 125–6
hemizygous, 125
heritability, 140–41, 143, 145, 177, 221–4, 238, 281, 284
broad sense, 143, 221
estimation of, 223–4, 228
of liability, 146, 180
narrow sense, 143, 145, 221, 228
realized, 223
table of estimates, 225
hermaphrodite, 116
ture, 116
heterogametic sex, 9
heterogeneity of disease, genetic, 87–90, 97, 155
heterosis, 254–60, 264, 267, 268
individual, 254
maternal, 254
parental, 254
paternal, 254
heterozygosity
expected, 281, 288
observed, 280, 288
heterozygote, 61
double, 28, 30, 31
selection against, 132–3, 162
selection favouring, 131–2, 137, 168, 175, 177
for translocation, 107, 109
heterozygous, 25
high-resolution melt (HRM)
analysis, 63
hip dysplasia in dogs, 139–40, 140, 300–301
core of, 291–2
histocompatibility, 163
histoglobulin, 163–4, 163, 170
histone, 11
homeo domain, 23
homeobox, 23
homeotic gene, 23
homogametic sex, 9
homologue, 3, 8, 28, 29, 37
homozygosity mapping, 96
homozygote, 61
double, 28, 30, 31
for translocation, 109
homozygous, 25
horns, absence of, 201
horse
geno me sequenced, 75
karyotype, 4, 45
host-pathogen interaction, 179–83
hosts, resistance in, 183–4
HRM analysis, 63
in MHC genotyping, 166
hybrid vigour; see heterosis
hybridization, interspecific, 113
identical by descent, 207
idiogram, 4
cattle, 6
immunogenetics, 158–71
immunoglobulin, 159–60
imprinting, 34–5, 37, 155–6, 202
improvement lag, 250, 251, 253
in vitro fertilization (IVF) of ova, 272–3, 278
maturation (IVM) of ova, 272–3, 278
inactivation, 32, 35, 37
inbred line, of cattle, 214
inbreeding, 242–3, 267, 270, 271, 272, 278
coefficient, 207–8, 209–12, 214
depression, 212–4, 214, 242, 267
in populations, 212, 214
incomplete
dominance, 87
penetration, 145–7
indel, 24
independent culling levels, 242
index selection, 237, 239, 242, 246
indirect
comparison, 231
selection, 239
individual
heterosis, 254
selection, 236
information nucleus, 252
inheritance, 25, 26, 151–3
autosomal
dominant, 86, 90, 151–2
recessive, 86, 90, 152
co-dominant, 87, 97
dominant, 97
incompletely dominant, 87
multifactorial, 148, 175–6, 176, 177
pol ar over-dominance, 202
recessive, 97
sex-limited, 87, 155
X-linked dominant, 152–3
X-linked recessive, 153
inherited disorders
control of, 291–306
paradox of, 292–3, 305
INSDC, 55
insecticide, resistance to, 184–6
insert DNA, 49, 81
insertion mutation, 24, 36, 62, 64, 95, 116, 203
in-situ conservation programme,
287
insurance scheme, 302
inversion, 75, 111–2, 118
paracentric, 111, 120
pericentric, 111, 120
inverted repeat, 36
isoerythrolysis, neonatal, 161–2
IUCN, 280
IVF, 272–3, 278
IVM, 272–3, 278
jumping gene, 36
karyotype, 1, 2, 4, 5, 11, 37, 39–45
cat, 39
chicken, 41
dog, 40
evolution of, 113
goat, 43
horse, 45
pig, 42
sheep, 44
kilobase (kb), 14
knockout, gene, 79
lag, improvement, 250, 251, 253
LD, 135–6, 137, 245–6, 299, 306
leader sequence, 19, 20
leucine zipper, 22
liability, 139–43, 141, 142, 148, 179–80, 301
heritability of, 146, 180
library
BAC, 73
cDNA, 51, 53, 52, 81
genomic, 51, 52, 81
plasmid, 52
ligand, 196
ligation, 49
LINE, 64
line breeding, 209, 213
linkage, 27–32, 37
disequilibrium, see LD
equilibrium, 135
group, 83
map, 32, 70, 74, 83
live recombinant vaccine, 77
llama, karyotype, 4
location database (LDB), 73
loci, 24–5
locus, 24–5, 37
long interspersed element, see LINE
loss
of genes from a population, 134
of genetic diversity, 284–6
Lyon hypothesis, 34
lysosomal storage disease, 91
macrochromosome, in birds, 3
MAF, 122
major histocompatibility complex, see MHC
malignant hyperthermia syndrome, see MHS
map
BAC fingerprint, 73
comparative, 75
distance, 31, 32, 32
integrated, 74, 83
linkage, 70, 74, 83
physical, 70, 74, 83
mapping
comparative, 73
function, 32, 32
gene, 70–74
interval, 224
marker-assisted
introgression, 263
selection (MAS), 244
Markov chain Monte Carlo (MCMC), 156
marusial, 34
MAS, 244
mass selection, 236
massively-parallel sequencing, 55, 82
maternal heterosis, 254
mean, 216, 217
megabase (Mb), 14
meiosis, 7–11, 29, 30–31, 37, 103–4, 104
in female, 8
in male, 10
melanocyte, 195
melanosome, 195
Mendel inheritance, 25–7, 37, 151–3
messenger RNA, see mRNA
metacentric chromosome, 3
metallothionein promoter, 79
metaphase, in mitosis, 11
methylation, 35
metric traits, see quantitative traits
MHC, 163–9, 163, 170, 177
association with disease, 168, 184
and mate choice, 169
restriction, 165
MHS, 173–4, 177, 298
microarray, 69
expression, 82
microchromosome, in birds, 3
microdissection, of single chromosomes, 72
microdissection, of chromosomes, 72
microRNA (miRNA), 81, 83
microsatellite, 65, 67, 68, 82
in pedigree checking, 204, 205
migration, 123
minisatellite, 65
in pedigree checking, 204, 205
minor allele frequency, see MAF
miRNA, 81, 83
mis-sense mutation, 24, 92, 167
mitosis, 11, 12, 37
mixoploidy, 106
MOET, 271–2, 278
monosomy, 103, 106, 117, 118
mosaic, 34, 105
mRNA, 16, 17, 18, 37, 51, 52
multifactorial
 disorders, genetic control of, 300–302, 306
inheritance, 139–43, 141, 142, 148, 175–6, 176, 177, 177
multigenic family, 35
multiple allele, 25
ovulation and embryo transfer, see MOET
multiplex PCR, 57
multiplier, in breed structure, 249, 250, 251, 253
muscular hypertrophy, 201–2
mutation, 23–4, 37, 123
deletion, 23, 24, 62, 64, 89, 90, 95
frameshift, 24, 94, 95
gene, 23
germ-line, 24
insertion, 24, 36, 62, 64, 95, 116, 203
mis-sense, 24, 92, 167
nonsense, 23, 92
point, 23
silent, 24, 167
somatic, 24, 160
myxomatosis in rabbits, 179–80
narrow-sense heritability, 221, 228
National Scrapie Plan for Great Britain, 181
natural selection, 127, 180
ncRNA, 21
N., 243, 247, 267
neonatal isoerythrolysis (NI), 161–2
net economic value (v), 241
next-generation sequencing, 55, 75, 82
nombre fondamental (NF), 113
non-additive
genetic deviation, 220
genetic variance (VNA), 221
non-disjunction, 103, 104, 104
non-genetic deviation (E), 218, 227
variance (Ve), 221, 228
non-orange, coat colour, 32, 33
non-protein-coding RNA, 21
non-recombinant, 29
chromosome, 8
gamete, 28, 29
nonsense mutation, 23, 92
non-sister chromatid, 28, 29
non-synonymous base substitution, 167
NOR, 22
normal equations, 237
northern blotting, 58
nucleolar organizer region (NOR), 22
nucleolus, 22, 33
nucleotide, 11, 12, 13
nucleus
 in breed structure, 249, 250, 251, 253
 information, 252
 numerator relationship, 211
objectives, breeding, 240
observed heterozygosity, 280, 288
Okazaki fragment, 15
oligonucleotide, 56
OMIA, 98
oncogene, 196
online Mendelian inheritance in animals, see OMIA
open reading frame, 16, 75
open-nucleus breeding scheme, 250–1, 253
opossum, genome sequenced, 75
orange, coat colour, 32, 33
overall merit, selection for, 242
Oxford grid, 75
p arm, of chromosome, 3
painting, chromosome, 72, 72
palindrome, 36, 46
paracentric inversion, 111, 120
paradox of inherited disorders, 292–3, 305
parasites
 control of, 188–90
 resistance in, 184–6
parental heterosis, 254
partial digestion, 51, 52
paternal heterosis, 254
paternity test, 204, 205
pathogens
 control of, 190
 resistance in, 186
PCR, 55–8, 56, 82
amplification cycle, 57
annealing phase, 56, 56, 57
denaturation phase, 56, 56, 57
in diagnosis, 63–4
extension phase, 56, 56, 57
in MHC genotyping, 166
multiplex, 57
product, 57
real-time quantitative (Q-PCR), 57
reverse transcription (RT-PCR), 57
pedigree, 153–5, **154**
analysis, 295, **306**
checking, 204–5, **205, 206**
selection, 236
software, 155
penetrance, incomplete, 145–7
peptide, **16**
synthesis, **18**
peptide-binding region (PBR), of MHC, 165, 167–8
performance testing, 236
pericentric inversion, 111, 120
phaeomelanin, 195
phage lambda, 48, **48**, 49
pharmacogenetics, 172–8
phenocopy, 91–2, **97**, 155
phenotype, 87
phenotypic correlation (rP), 224, 226, **228**
intersex, 117, **118**
value (P), 218, **227**
variance (VP), 221–2, **228**
phylogenetic tree, 283, **283**, 289
physical map, 70, 74, **83**
pig
genome sequenced, 75
karyotype, 4
transgenic, 78
plasmid, 49, **50**
library, **52**
recombinant, 80
and resistance to antibiotics, 187
platypus, genome sequenced, 75
pleiotropy, 132
point mutation, 23
polledness, 201
poly-A tail, 21
polyadenylation of RNA, **19**
signal, 21
polygene, 224
polymerase chain reaction, see PCR
polymorphic, 57
polymorphism, 62, 69, **137**
extreme in MHC, 166–7, **170**
polypeptide
from cloned DNA, 76–7
synthesis, 16–17, **18**
polyplody, 106, **118, 120**
induced in fish, 107
population size, effective, see N e
prediction phase, of GWS, 245
primer, for PCR, **56**
prion, 180–82
proband, 154, **154**
probe chip, 60
in Southern blotting, **58, 59**
processed pseudogene, 164
progeny
difference, 219
testing, 236
prokaryote, 16
prolificacy in sheep, 200–201
promoter, **19**, 20, 22, 79
pronucleus, 77, **78**
proximal end, of chromosome, 74
pseudo-autosomal region, 9, **10**
pseudogene, 164
processed, 164
pseudohermaphrodite, 116
female, 116
male, 116
Punnett square, 9, 25, 27, **30, 31**
expression, 226
quadrivalent, in meiosis, 108–9, **109**
quantitative
RT-PCR, 57
trait locus, see QTL
trait nucleotide (QTN), 226
traits, 216–29
variation, 216–29
R factor, 187
rabbit
genome sequenced, 75
karyotype, 4
radiation hybrid (RH), 71, 72
random amplified polymorphic DNA, see RAPD
mating, 122, **136**
RAPD, 57
Rare Breeds Survival Trust, 286
realized heritability, 223
real-time quantitative PCR (Q-PCR), 57
RT-PCR, 57
recessive, 86, 90
disorder, **97**
gene, selection against, 129
reciprocal translocation, 107–9, **118, 120**
recognition sequence, 46, 47
recombinant, 28, **29**
chromosome, 8
DNA, 49–51
gamete, 28, 29
plasmid, **50, 80**
protein, 273–4
vaccine, 274
recombination, 29, **37**, 71
fraction, 28, 29, **30, 31, 31, 32**, 32, **83, 135**
hotspot, 65
in meiosis, 7
recurrence risk, 147–8
empirical, **148**
theoretical, **148**
red-cell antigen, 170
redundancy, in genetic code, 16, 24
reference sire, 244
regular crossing, 254–60, **264, 265, 304**
and selection, 267–9
regulation, gene, 81
regulatory protein, **37**
relationship, 208–9, 210–11, **214**
additive, 211, 238
collateral, 209, **214**
direct, 208–9, **214**
numerator, 211
relative fitness, 127
relatives, resemblance between, 223
REML, 223, 224
repeat
direct, 36
inverted, 36
unit, 36
unstable, 155
repeatability, 236, 238
repetitive DNA, 36, **37**
replication, of DNA, 14, **15**
repressor, 22, **37**
resemblance between relatives, 223
resistance to anthelmintics, 186
to antibiotics, 186–7
in hosts, 183–4
selection for, 190–91
to insecticides, 184–6
to Marek’s disease in chickens, 183–4
in parasites and pathogens, 184–7
to scours in pigs, 183
resource family, for linkage mapping, 70
response element, 23
to selection (R), 221–3, 222, 228, 284
restricted maximum likelihood, see REML
restriction enzyme, 46, 47, 49, 81
fragment length polymorphism, see RFLP
map, 48, 49
site, 61
retrovirus, 51
reversal, of sex, 102, 106, 120
reverse dot blot, 63
transcriptase, 51, 52, 81
transcription, 51
PCR (RT-PCR), 57
RT-PCR, 64
screw-worm fly, 188–9
segregation analysis, 155–6
complex, 147, 156
segregation, 25, 27
independent, 26, 37
ratio, 25, 26, 27
selection, 123, 127–33, 136
accuracy of \((r_{se})\), 236
against a recessive gene, 129
against heterozygotes, 132–3, 162
artificial, 127, 230
between populations, 230–34
coefficient, 127
criteria, 235, 241
differential (S), 222, 228, 284
against a dominant gene, 127–8
favouring heterozygotes, 131–2, 137, 168, 175, 177
index, 237, 239, 242, 246
indirect, 239
individual, 236
mass, 236
natural, 127, 180
pedigree, 236
and regular crossing, 267–9
for resistance in hosts, 190–91
response to (R), 221–3, 222, 228
sib, 236
within populations, 235–48
for a dominant gene, 128
for a recessive gene, 129–31
sense strand, of DNA, 20
sequence databases, 55
read, 55
sequence-tagged site (STS), 67
sequencing cycle, 58
DNA, 53–5
massively-parallel, 55, 82
next-generation, 55, 75, 82
pyrosequencing, 53
by synthesis, 55, 81
sex
chromatin, 33
chromosome, 3, 7
non-disjunction of, 103–4, 104
determination, 3, 115–6
ratio, control of, 273
reversal, 102, 106, 120
sexing chickens, 202–3, 203
sex-limited inheritance, 87, 155
sex-linkage, 27
sex-linked, 27
sheep
blowfly, 184–6
karyotype, 4, 44
transgenic, 78, 78
short interspersed element, see SINE
sib selection, 236
signal transduction pathway, 196
silent mutation, 24, 167
SINE, 64, 65
single nucleotide polymorphism, see SNP
single-copy DNA, 35
single-gene disorders, investigating with a SNP chip, 96
traits, list of, 98–102
single-sperm typing, 71
single-stranded conformational polymorphism, see SSCP
sire family, 236
line, 255, 268
sire-reference scheme, 243–4
SIRM, 188–9, 192
siRNA, 81, 83
sister chromatid, 28
small interfering RNA, see siRNA
SNP, 68–9, 70, 71, 82, 122, 131, 206
chip, 69, 70, 82, 83, 136, 147, 191, 204, 280, 306
in GWS, 244–5
in investigating single-gene disorders, 96, 97
somatic mutation, 24
somatic-cell hybrid, 71
Southern analysis, 58, 59, 64, 66, 205
blotting, 58, 59
south-western blotting, 58
specific crossing, 255–7, 265
splice site, 21
splicing in recombinant DNA, 49
of RNA, 19, 21
split genes, 20–22
spongiform encephalopathy, 180–82
sporadic case, 156
SSCP, 62
start triplet, 19, 20
in genetic code, 16
stem cell, embryonic, 78
sterile insect release method, see SIRM

Index
sticky end, 47, 81
stop triplet, 19, 20
in genetic code, 16
straight-bred, 254
structural gene, 18, 19, 20, 35, 37
structure, of breeds, 249–53
sub-metacentric chromosome, 3
synapsis, 7, 8, 9, 10, 28
synaptonemal complex, 7
synonymous base substitution, 167
syntenic group, 71
synteny, conservation of, 73, 83
synthetic population, 260–61, 265, 268
3’ end of a DNA segment, 12, 13, 14, 15, 16, 18, 19, 21, 36
2n number of chromosomes, 3, 4
tandemly-repeated DNA, 22, 64–8, 205
tandem translocation, 110, 120
Taq polymerase, 56, 57
TATA box, 19, 20
temperature gradient gel electrophoresis, see TGGE
template
DNA (for PCR), 56, 56
strand, 16, 18, 19
test matings, 295–7, 306
tester population, 231
tetraploidy, 106, 107, 120
TGE, 36, 37, 65, 187
TGGE, 62
TGRMTM, 243, 286
thermal cycler, 57
three-way cross, 256, 259, 260, 265, 272, 277, 278
threshold, 139–43, 141, 142
thresholds, multiple, 141–3, 142
thyamine, 12, 13, 14, 16
tissue rejection, 163, 164
tissue typing, 166
tortoiseshell coat colour, 32, 33, 34, 105, 126, 195–6
Total Genetic Resource ManagementTM, see TGRMTM
trailer sequence, 19, 20
transcription, 16, 18, 20, 37
factor, 20
initiation site, 19, 20
termination site, 19, 20
transcriptome, 60
transduction, and resistance to antibiotics, 187
transfer RNA, 16
transformation, 50
and resistance to antibiotics, 187
transfusion, blood, 161
transgene, 77
transgenesis, 77–80, 78, 83, 191, 274–5, 279
transgenic
cattle, 78
fish, 78
goat, 78
pig, 78
sheep, 78, 78
translation, 17, 37
translocation, 118
centric fusion, 110, 110, 111, 118, 120
heterozygote, 107, 109
homogygote, 109
reciprocal, 107–9, 118, 120
Robertsonian, 110, 110, 111, 118, 120
tandem, 110, 120
transplantation, 293
kidney, in dogs, 164, 165
transposable genetic element, see TGE
transposon, and resistance to antibiotics, 187
trend, genetic, 239
trinucleotide repeat, unstable, 95
triplet code, of DNA, 16, 17
triplody, 106, 107, 120
trisomy, 103, 117, 118, 119
autosomal, 105–6, 119
trivalent, in meiosis, 111, 111
tRNA, 16
true breeding value, 235
tryptosomiasis, African, 182–3
two-way cross, 255, 259, 260, 265, 272, 277, 278
type of gene action, 86–7, 90–91, 97
unstable trinucleotide repeat, 95
untranslated region, see UTR
uracil, 16
urea cycle, 86
UTR, 20
vaccine
live recombinant, 77
recombinant, 274
variable
expressivity, 146
number of tandem repeats, see VNTR
variance, 216, 217, 220
in breeding values (VA), 221–2, 228, 268, 281, 284
in dominance deviations (VD), 221–2, 228
in epistatic deviations (VE), 221–2, 228
genetic (Vg), 220, 221
in non-genetic (environmental) deviations (Ve), 221–2, 228
in phenotypic values (Vs), 221–2, 228
variation, 220–21
in base sequence, 60–63
between breeds, 150–51
within breeds, 150–51
quantitative, 216–29
vascular anastomosis, 114, 115
vector, in DNA cloning, 49, 81
VNTR, 64–8, 66, 204
W chromosome, in birds, 3
warfarin, resistance to, 174–5, 177
western blotting, 58
wild-type, 32
World Watch List, of FAO, 280
X chromosome, 3, 33, 34
X-inactivation, 34, 37, 155
X-linkage, see X-linked
X-linked, 27, 32, 34, 73, 105, 125–6, 151, 201
disorders, 90–91, 93, 101, 102, 116, 299
dominant inheritance, 152–3
recessive inheritance, 136, 153
XX male, 116, 120
XX/XY chimerism, 114
XY female, 102, 116, 120
Y chromosome, 3
YAC, 51
yeast artificial chromosome, see YAC
Y-linked, 27
Z chromosome, in birds, 3
Z-inactivation, 34
zinc finger, 22, 23, 76
zoo-FISH, 72, 73
zygote, 7