Index

Note: Page references followed by f indicate an illustrated figure, respectively.

A
ABC classification process, 52, 55–56, 179–180
ABCD inventory policies, 285–286
Aberdeen, 280
acceptance rates, 110, 110f
accumulated demand variance, 50–51, 51f
aggregate and buy, 259, 262
aggregated variance, 52
alerts, customer service and significance of, 141
_ALGORITHM_ variable, 98, 98f
algorithms
business users and, 112–114
in single-echelon model, 98
allocated product, 146–148
analytical perspective, viewing POV from, 169–170
arc data, 41, 48
as-is decision flow, 220, 222–223
attention focused, in buyer focus quadrant, 180–181, 180f, 186
automated forecasting, in Matas, 195
average backorder
about, 91
in single-echelon model, 97
average cost
about, 92
in single-echelon model, 98
average inventory
about, 91

in single-echelon model, 97
average order frequency, in single-echelon model, 97
average ordering frequency, 91

B
backlog, in min-max policy, 105
backorder penalty costs, in min-max policy, 105
backorder ratio
about, 91
in single-echelon model, 98
Barabas EOQ model (Barabas formula), 62–65, 63f
base-stock policy, 105–108
batch run optimization, 47
benefit analysis, SVA, 226f, 228–230, 229f
black-box results, 115
Børsen, Jesper Amsinck, 216
BS = policy, 94
budget constraints, placing on customer-facing locations, 117–121
build-to-order model
See pull supply chain methodology
built-to-stock model
See push supply chain methodology
bulk purchasing discounts, 149–150
bullwhip effect, 74–75, 74f, 213, 260

295
business rules, in inventory optimization process, 209f, 212
business users
  algorithms and, 112–114
  compared with technical analysts, 138
  environment for, 114–133
  solution for, 133
buyer efficiencies, improved, 188–189
buyer focus quadrant, 180–181, 180f

C
  cash-to-cash cycle, 266
  Cecere, Lora, 74, 263
  "What Drives Supply Chain Excellence", 28–29
  Chan, S.
  Chase, Charlie
  *Demand Driven Forecasting*, 2nd edition, 271
  check-and-balance, 55
  collaborative planning, forecasting, and replenishment (CPFR), 56–57, xv
  collaborative technology, 286–287
  constraints
    about, 140
    replenishment planning and, 140–141
    space, 144–145
    time, 142–144
  consumer packaged good manufacturing, 268–273
  continuous review, 93
  cost-reaction, 112
  costs
    inventory, 90
    shifting on balance sheets, 54–55
  CPFR (collaborative planning, forecasting, and replenishment), 56–57, xv
  Croson, R., 242–243, 248
  current processes, as step in SVA, 222–223
  customer service
    policies for, 282
    significance of alerts and, 141
  customer-facing locations
    changing service levels in, 115–117
    placing budget constraints on, 117–121
  customers
    information required from
      for good installation of inventory optimization, 238–240
      pushback from, 34–35
  D
  data
    master, 247
    sparse, 246
    volatile, 246
  days of coverage, 259
  days of supply, 259
  deliveries, multiple, 152–153
  Dell Computer, 27
  demand
    comingling of, 145–146
    inventory optimization and, 93–94
    known compared with predictable, 29–32
    search for true, 38–41
  *Demand Driven Forecasting*, 2nd edition (Chase), 271
  demand focused, in buyer focus quadrant, 180f, 181
demand planning, 222–223
demand sensing, 272
demand-driven supply
moving to, 10–12
path to, 4–5
shifting from supply-driven
to, 5–10
denormalized tables, 44–47, 46f
deterministic demand, 24
discovery, 181
distribution
about, 264–265
benefits of inventory
optimization to, 267–268
issues with, 33–34
key problems with, 265–267
distribution center (DC)
replenishment, at Matas, 197–198
distribution chain
just-in-time (JIT) production
supply chain weaknesses
in, 32–33
squeeze on both ends of, 35
downstream demand,
anticipating, 265–266
downstream service levels,
52–54, 53f
denormalized tables, 44–47, 46f
efficiency frontier, 227, 263
efficient consumer response
(ECR), xv
80/20 rule, 70–71
electronic data integration
(EDI), 62
end-to-end owner of inventory,
286
enhance, versus replace, 174
terprise resource planning
(ERP)
See also just-in-time (JIT)
production
about, 3, 44, xvi
accumulated demand
variance, 50–51, 51f
denormalized tables,
44–47, 46f
effect of inventory
optimization on, 88–89
effects of shortcomings in,
52–54, 53f
efficient consumer response
(ECR), xv
80/20 rule, 70–71
electronic data integration
(EDI), 62
end-to-end owner of inventory,
286
enhance, versus replace, 174
enterprise resource planning
(ERP)
See also just-in-time (JIT)
production
about, 3, 44, xvi
accumulated demand
variance, 50–51, 51f
denormalized tables,
44–47, 46f
efficiency frontier, 227, 263
efficient consumer response
(ECR), xv
80/20 rule, 70–71
electronic data integration
(EDI), 62
end-to-end owner of inventory,
286
enhance, versus replace, 174
enterprise resource planning
(ERP)
See also just-in-time (JIT)
production
about, 3, 44, xvi
accumulated demand
variance, 50–51, 51f
denormalized tables,
44–47, 46f
efficiency frontier, 227, 263
efficient consumer response
(ECR), xv
80/20 rule, 70–71
electronic data integration
(EDI), 62
end-to-end owner of inventory,
286
enhance, versus replace, 174
INDEX

F
Felix, T.

fill rates
about, 91
anticipating high, 266
in single-echelon model, 98

Ford, Henry, 21
forecasting
in inventory optimization process, 209–210, 209f
typical problems with, 244–247

forgotten order, 196

"From Push to Pull-Perfecting the Means", 40

G
Gartner and Supply Chain Digest, 255
General Electric, 55–56
GMA (Grocery Manufacturer’s Association), 255
Goldilocks products, 69–70, 70f, 80
Grocery Manufacturer’s Association (GMA), 255

H
Harris, Ford W., 63
high-powered analytics, result of performing with normalized tables, 53–54
holding costs, 90
hub-and-spoke inventory placement, 285
hype cycle, 110, 110f

I
incurred per period, 92
individualized days of supply, 80

Industrial Age, 21
Information Resources Incorporated (IRI), 12
insight, 181
intended island of efficiency, 14–15
in-transit inventory, 287
inventory
adjustments of, 81
degrees of freedom for decisions with, 283–284
design tipping points, 37–38, 38f
moving focus to replenishment from, 55–57
performance, by industry 2005-2010, 256–258t
policy development, 89, 89f
inventory costs, 90
inventory optimization (IO)
See also specific topics
about, 2, 4, 88, 194–195
consumer packaged good manufacturing benefits of, 270–273, 273f
demand, 93–94
developing policy outputs, 94–108
development of inventory policies and replenishment plans, 89, 89f
distributor benefits of, 267–268
effect on ERP systems, 88–89
enhancement of ERP system by, 187–188
as good business rationale, 160–161
history of, 110–112
installation example, 234–251
lead time, 92
lead-time variance, 92–93
at Matas, 199–203
network structure, 89–90
INDEX 299

ordering rules, 92–93
output, 248–249, 250
process flow, 208–215, 209f
replenishment as a means to
harmony in, 157–158
in retail industry, 260–264, 264f
service level, 91–92
inventory planning, 223
inventory ratio
about, 91
in single-echelon model, 98
inventory turns, 243–244
IO
See inventory optimization (IO)
IRI (Information Resources Incorporated), 12
island of efficiency, 12–14, 14–17, 106f

J
Jinxin Yi, 88
just-in-time (JIT) production
See also enterprise resource planning (ERP)
about, 24–26, 44
in action, 28–29
efficiency requirements for, 26–28
supply chain weaknesses in
distribution chain, 32–33
using to create efficient supply chains, 35–37

K
Kanban System, 14–15, 14f, 23–26
in action, 28–29
known demand, predictable
demand and, 29–32
Kruse, Erik, 3, 277
Kumar, V.

L
lead time
changing at locations, 121–132
inventory optimization and, 92
pulling, 153
pushing, 153
lead-time variance
adjusting, 137–138
inventory optimization and, 92
lean principles, 285
limited scope, 234
location inventory policies,
individually assigned, 81
locations, changing lead time at, 121–132
long tail, 58–62, 58f, 260–263, 261f
long-term event, 156
lost-sales option, in min-max policy, 105
lynchpin, 219–220

M
market indexing, 276
Matas A/S real world example automated forecasting and replenishment, 195
distribution center (DC) replenishment, 197–198
goal of, 213
inventory optimization project, 199–203, 206f
network, 206–208, 207f
optimization process, 208–212
pilot program versus proof of value process, 203–205
problems at, 196
project reflections, 215–216
Matas A/S real world example
(Continued)
- project rollout, 205–206
- results for, 214–215
- store replenishment, 198–199
- material flow process, 221–222
- McBride, Joanne, 5–9, 12–14
- merge-in-transit opportunities, 286
- metrics of measurement, as step in SVA, 223–224
- Meyer, Abby
  - "What Drives Supply Chain Excellence", 28–29
- min-max policy
  - about, 104–105
  - in inventory optimization process, 209f, 210–211, 211f
- MIT Beer Game, 13–14, 242–243, 255
- mixed management, in buyer focus quadrant, 180f, 181, 186–187
- monitoring, 56–57
- MTCA (multitiered casual analysis), 271–273
- multidelivery event, 156–157
- multiechelon distribution with replenishment, 101–108, 108f, 287
- multiechelon inventory optimization, 154–155
- multiple deliveries, 152–153
- multisource event, 156–157
- multisource/multidelivery/single event, 156–157
- multitiered casual analysis (MTCA), 271–273
- multivendor products, 150

N
- network structure
  - inventory optimization and, 89–90
  - Matas, 206–208, 207f
  - nimble inventories, 225
  - normalized tables, 44–45, 45f, 53–54
  - NQ = policy, 94–95
- O
  - offsite, compared with onsite, 249–250
  - online analytical processing (OLAP) denormalization, 44–45
  - onsite, compared with offsite, 249–250
  - operations research
    - segmentation, in inventory optimization process, 209f, 211–212
  - optimization
    - See also inventory optimization (IO)
    - about, 2
    - result of performing with normalized tables, 53–54
    - sequential, 48, 48f
    - simulation of, 183–184
- ordering costs, 90
- ordering rules, inventory optimization and, 92–93
- ordering system, in Matas, 214–215, 214f, 215f
- order-up-to level, in single-echelon model, 97
- out-of-stock situations
  - about, 254
  - at Matas, 201–202, 213
- output comparisons, 279
- outside staging locations, 150
P
‘packing somebody’s pantry’, 10
penalty costs, 90
performance metrics, 224
pilot program, 203–205, 235f
policy
devolving outputs, 94–100
effect of, 184–187
postponement opportunities, 286
POV
See proof of value (POV)
predictable demand, known
demand and, 29–32
product flow process, 221–222
products
differing perspectives of, 179–181
individually assigned
inventory policies, 81
new, 245–246
replacement, 245–246
project management
viewing POV from perspective
of, 168–173
workflow, 235f
projection assumptions,
227–230, 228f
promotional volume,
145–146, 146f,
154–155, 154f
proof of value (POV)
assessment of, 174–175
complete, 173–175
goals of, 175
measurement of success
of, 189–191
versus pilot program,
203–205
from a project management
perspective, 168–173
setting up, 164–165
steps for success, 175–179,
176f
when they don’t work, 168
when they work, 161–168
pull supply chain methodology,
2–3, 8, 20–22, 22f
push supply chain methodology,
20–22, 22f
push-pull quadrant, 22, 22f
push-pull tipping points,
37–38, 38f
R
reacting, 57
reaction time, in retail industry,
261–262
ready rate
about, 91
in single-echelon model, 98
real world example, 194–216
redundancy, 143
redundant inventory, 51
reorder level, in single-echelon
model, 97
replace, versus enhance, 174
replenishment
about, 4–5
current state of planning for,
140–141
development of plans for, 89,
89f
in Matas, 195
at Matas DC, 197–198
at Matas store, 198–199
as a means to inventory
optimization harmony,
157–158
moving focus from inventory
to, 55–57
moving upstream reactions
into real, 153–157
optimized, 148–149
replenishment policies
multiechelon distribution
with replenishment,
101–108, 108f
simulation of, 182–183
single-echelon model, 95–98,
96f, 102f, 103f
replenishment policies
(Continued)
two-echelon distributions,
99–100, 99f, 100f
types, 94–95
request for proposal (RFP), 218,
230–231
retail industry, inventory
optimization in, 260–264,
264f
retail partner, 269
retail/consumer packaged goods
(CPG) industry, 27
RFP (request for proposal), 218,
230–231
risk-pooling opportunities, 286
rolling amplification, 74
RQ = policy, 95
rule-of-thumb days of supply
about, 68–73
creating efficiency envelope,
82–85, 82f
inefficiencies of, 73–78
reversing, 78–81
rule-of-thumb inventory
management, 7–8
rule-of-thumb weeks of
supply, 68–73

S
safety stock
buffer, in retail industry, 262
policies for, 282–283
shifting, 134–135
sales drivers, lacking knowledge
of, 246–247
Sand, Jacob, 196, 216
Sanli, Tugrul, 88
SAS Inventory Optimization User
Guide, 88
SAS Inventory Optimization
Workbench, 114
See also business users
SCM (supply chain
management), 3, 47
segmentation, 55–56
sequential optimization, 48, 48f,
74–75, 74f, 106f
service level
aligning to importance
of product to portfolio,
135–136
changing in customer-facing
locations, 115–117
hierarchies of requirements,
51–52
inventory optimization and,
91–92
service level agreement (SLA),
136
setting the stage, as step in
SVA, 220
70/10/20 rule, 76
shelf out-of-stock, 254
short supply, 146–148
short-term event, 155–156
single stage calculations, 48
single-delivery event, 155–156
single-echelon model, 95–98,
96f, 102f, 103f
single-source event, 155–156
single-source/single-delivery/
long-term event, 156
single-source/single-delivery/
short-term event, 155–156
SKU distribution, 58–62, 58f
SKU (stock keeping unit)
rationalization, 2
SLA (service level agreement),
136
“snake oil” white papers, 4
space constraints, 144–145
spreadsheet management
process, of inventory
control, 126
SS = policy, 94
star schemas, 44, 46f
store out-of-stock, 254
store replenishment, at
Matas, 198–199
strategic value assessment (SVA)
about, 218–219
benefit analysis, 226f, 228–230, 229f
beyond the request for proposal, 218
current processes, 222–223
lynchpin, 219–220
metrics of measurement, 223–224
results of, 226–227
setting the stage, 220
supply chain network, 220–222
what it accomplishes, 230–231
who to measure against, 225
success, measuring for, 225
supplier-managed practices, 285
supply, short, 146–148
supply chain
about, 2–3
alternative sources inside, 150–151
history on, 85–86
inventory strategies, benchmark report recommendations, 285–287
lean benefits, 286–287
network design, 281–282
organization of, 281
using JIT functionality to create an efficient, 35–37
supply chain management (SCM), 3, 47
supply chain network, as step in SVA, 220–222
supply chain verticals
about, 254–259
consumer packaged good manufacturing, 268–273
distribution, 264–267
supply-driven, shifting to demand-driven from, 5–10
SVA
See strategic value assessment (SVA)
T
technical analysts
compared with business users, 138
environment for, 133–138
solution for, 133
technologies, adoption of, 110–112, 110f
Telephone game, 74–75
time constraints, 142–144
time series, 245–246
Toyota, 23–24, 25–26
tradeoffs, management of, 284
tribal knowledge, 113
trough of disillusionment, 111
trust
creating, 236–238
lack of in forecasting, 245
turn volume, 145–146, 146f, 154–155, 154f
turnover
about, 92
at Matas, 201
in single-echelon model, 98
two-echelon distributions, 99–100, 99f, 100f
U
unintended island of efficiency, 15–17, 15f
upstream reaction, 149–153, 153–157
upstream service levels, 49–50, 49f

V
value chain analytics (VCA), xv
vendor performance, 137–138
vendor-managed inventory (VMI), 6, 54–55

W
Walmart, 277
warehouse management systems (WMS), 92
weeks-of-supply, 285–286

“What Drives Supply Chain Excellence” (Cecere and Meyer), 28–29

X
Xinmin Wu, 88

Y
Yang, W.