Index

Accelerometer, 2, 76, 108, 198
Accelerometer
 inertial force: Problem 1.3, 198
 inertial mass: Problems 4.2, 4.3 and 4.4, 241
 resonant: Problem 6.9, 274
 transfer function: Problem 5.13, 262
AFM, 4
AFM
 CCD detector: Problem 3.8, 230
Air–dielectric interface: Problem 1.5, 199
Amorphous silicon, 187
Anemometer, 166
Anisotropic, 86
Anisotropic etching, 185
Anisotropy, 185
Beam equation, 44
Beam equation
 parabolic bending: Problem 4.9, 246
Bending moment, 43
Bending of microstructures, 37
Bimorph, 172, 174, 184, 246
 neutral plane: Problem 3.9, 231
Blocking force, 9
Boron, 186
Bulk micromachining, 184
Cantilever, 4, 13, 42, 129, 187
Cantilever
 restoring force: Problem 1.1, 197
Capacitance, 96
Capillary, 14
Capillary
 force, 6
 force: Problem 1.6, 201
Carbon nanotubes
 piezoresistance: Problem 9.10, 305
Castigliano’s second theorem, 48
Centroid
 equivalent width: Problem 3.13, 237
Charge density, 4
Charge drive, 105
Circular membrane, 58
Circular membrane
 piezoresistance: Problems 4.7 and 4.8, 244
Clamped, 38
Clausius–Mossotti factor, 11, 156
CMOS, 188
Co-energy, 49, 93
Comb actuator, 106
Comb actuator
 number of fingers: Problem 5.12, 261
Compass, 10
Compass magnetometer: Problem 1.10, 204
Compliance matrix, 22
Compliance matrix
 rotation: Problem 2.6, 213
Contact angle, 147, 153
Contact angle: Problem 7.1, 277
Coriolis, 131
Coulomb force, 4
Crab leg flexure, 227
Curvature, 39
Damping, 119
Damping energy, 249
Damping factor, 121
Damping vibration frequency, 117
Debye length, 143
Debye–Hückel equation, 143
Dielectrophoresis, 153

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/castaner/understandingmems
Dielectrophoresis
 nanoparticle sorting: Problem 1.11, 205
Dielectrophoretic force, 11
Dielectrophoretic force
 levitation: Problem 7.11, 283
Diffusion
 boron: Problems 9.6 and 9.7, 301
 drive-in: Problem 9.5, 301
Dipole moment, 11, 157
Dipole moment cosines, 30
Double layer, 142
Doubly clamped beam
 point force: Problems 3.4 and 3.5, 226
Drive-in, 186
Dry etching, 188
Dry oxidation: Problem 9.1, 299
Dynamic thermal equivalent circuit, 171

Elastic energy, 249
Elastic force, 3
Electric field, 4, 68, 75
Electrical dipole, 155
Electro-osmotic flow, 144, 279
Electrostatic actuator
 charge pulse drive: Problem 5.8, 256
 extended travel range: Problems 5.3 and 5.4, 251
 single equilibrium point: Problem 5.10, 259
Electrostatic force, 4, 97, 101
Electrostatic force
 deflection of beam: Problem 5.1, 249
 lateral, 106
 levitation: Problem 1.4, 199
Electrostatic motor, 255
Electrowetting, 146
Electrowetting
 on dielectric, 146
 single side electrodes: Problems 7.3 and 7.4, 278
Energy, 49, 93
Energy
 components in pull-in switching: Problem 5.2, 249
Equivalent stiffness, 47
Etch
 isotropic: Problem 9.3, 300
 selectivity: Problem 9.4, 300
Fabry–Perot, 191
Film embossing, 9
Flexure, 51, 204
Flexure
 fixed-fixed, 51
 folded, 53
Flexure rigidity, 55, 60
Flow measurement, 165
Flow measurement
 dynamic response: Problem 8.11, 295
Forced vibration, 117
Fourier, 159
Free body diagram, 38

Gauge factor, 68
Gauss law, 4, 14, 199
Gravimetric
 SOI: Problem 9.11, 305
Gravimetric sensor, 129
Gravimetric sensor
 SOI lateral: Problem 6.4, 270
Guided end, 38
Guoy–Chapman, 142
Gyroscope, 130

Gyroscope
 tuning fork sensitivity: Problem 6.6, 272

Hard mask, 184
Heat conduction, 159
Heat convection, 159
Heat equation, 159
Heat equation
 boundary conditions: Problem 8.3, 286
 convection: Problem 8.6, 290
 free end boundary condition: Problem 8.10, 293
 insulating supports: Problem 8.7, 291
 Problem 8.2, 286
Heat flux, 159
Heat rate, 160
Hold-down, 101
Hooke, 3

Interface
 air–dielectric interface: Problem 1.5, 199
IR detector, 175
Kinetic energy, 116, 127, 249
KOH, 185
KOH etching
 selectivity: Problem 9.2, 299

Laplace pressure, 6
Laplace pressure
 spherical drop: Problem 1.8, 202
Laplace transform, 108, 117, 123
LCR circuit, 124
Lift-off, 184
Lippmann, 146
Lorentz force, 10, 204
Magnetic force, 10
Magnetometer, 10
Matlab, 163, 213
Index

Matlab
 boundary conditions: Problem 8.5, 289
 electrowetting dynamics: Problem 7.8, 281
 electrowetting friction coefficient: Problem 7.9, 282
 Euler equation: Problem 3.10, 232
 heat equation: Problem 8.4, 288
 heated bridge: Problem 8.8, 292
 Poisson’s ratio rotation: Problem 2.10, 219
 rotation of stiffness matrix: Problem 2.5, 210
 stiffness elements rotation: Problem 2.9, 216
 Young’s modulus rotation: Problem 2.10, 219

Maximum stroke, 88
Membrane, 55
 thermal isolation: Problem 8.7, 291
MEMS
 RF, 6
 step-up converter: Problem 5.7, 256
Microelectronics, 181
Miller indices, 23
Moment of inertia, 43
 Moment of inertia
 several bending geometries: Problem 3.2, 222
Monocrystalline silicon, 76

Nanoparticle, 12, 137, 153
Navier–Stokes, 144
Neutral plane, 39
Neutral plane
 centroid: Problem 3.11, 235
 equivalent width: Problem 3.13, 236
 trapezoidal cross-section: Problem 3.1, 221
Nusselt, 167

Orthogonal base: Problem 2.1, 207
Orthogonal transformation, 29, 70

Parallel resonance, 124
Patterning, 181
Photolithography, 181
Photoresist, 181
Piezoelectric actuator, 8, 9, 87
Piezoelectric actuator
 ink jet: Problem 1.9, 203
Piezoelectric coupling tensor, 86
Piezoelectricity, 8, 86
Piezoresistance, 67
Piezoresistance
 boron diffusion: Problem 9.8, 303
 Piezoresistance coefficient, 68, 69
 Piezoresistance coefficient
 rotated coordinates: Problem 4.1, 239
Piezoresistor, 74, 242
Plane stress, 21
Plate equation, 54
Platinum resistor, 166
Platinum resistor
 Problem 8.1, 285
Poiseuille, 139
Poisson equation, 143
Poisson’s ratio, 18
Poisson’s ratio
 in rotated axes: Problem 2.3, 208
PolyMUMPs, 190
Polysilicon, 36, 174, 181
Polysilicon
 resistor: Problem 9.9, 303
Polystyrene nanoparticle, 14, 205
Potential energy, 116
Prandtl, 167
Pressure, 57, 79
Pressure-driven flow, 279
PSpice, 115, 120, 121, 125, 135
 accelerometer transfer function: Problem 5.13, 262
 accelerometer transient response: Problems 5.14 and 5.15, 262
 quality factor: Problem 6.2, 269
Pull-in, 97
Pull-in voltage, 97, 99
Pure bending, 40
Quality factor, 119
Quality factor
 bandpass: Problem 6.1, 267
Radiation, 159
Rayleigh–Ritz method, 126
Residual stress
 bending moment: Problem 3.3, 224
Resistance, 65
Resistivity, 65
Resistivity tensor, 69
Resonance
 shift induced by axial force: Problem 6.8, 274
Resonance frequency, 115
Resonance frequency
 free and damping: Problem 6.5, 271
Resonator, 121
Resonator
 LCR equivalent circuit: Problem 6.3, 269
Reynolds, 137, 167
RFMEMS
 switching capacity ratio: Problem 5.5, 255
Rotation matrix, 30, 72
Rotation matrix
 around Z-axis: Problem 2.8, 215
 problem 2.2, 207
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacrificial layer, 186</td>
</tr>
<tr>
<td>Seebeck, 175</td>
</tr>
<tr>
<td>Selectivity, 185</td>
</tr>
<tr>
<td>Series resonance, 124</td>
</tr>
<tr>
<td>Series resonance frequency, 125</td>
</tr>
<tr>
<td>Shape functions, 127</td>
</tr>
<tr>
<td>Shear force, 55</td>
</tr>
<tr>
<td>Shear stress, 15</td>
</tr>
<tr>
<td>Sheet resistance, 66</td>
</tr>
<tr>
<td>Silicon (100) Poisson’s ratio, 27</td>
</tr>
<tr>
<td>Silicon (100) Young’s modulus, 27</td>
</tr>
<tr>
<td>Silicon dioxide, 36, 181</td>
</tr>
<tr>
<td>Silicon nitride, 36, 181</td>
</tr>
<tr>
<td>SIMOX, 190</td>
</tr>
<tr>
<td>Sinusoidal permanent regime, 118</td>
</tr>
<tr>
<td>Small signal equivalent circuit, 121</td>
</tr>
<tr>
<td>Spring softening, 125</td>
</tr>
<tr>
<td>Spring softening</td>
</tr>
<tr>
<td>equivalent stiffness: Problem 6.7, 272</td>
</tr>
<tr>
<td>Spring–mass–dashpot system, 102</td>
</tr>
<tr>
<td>Static equilibrium, 37</td>
</tr>
<tr>
<td>Stiffness constant, 3, 46</td>
</tr>
<tr>
<td>Stiffness constant</td>
</tr>
<tr>
<td>AFM cantilever: Problem 3.7, 229</td>
</tr>
<tr>
<td>crab leg: Problem 3.6, 227</td>
</tr>
<tr>
<td>Stiffness matrix, 22</td>
</tr>
<tr>
<td>Stiffness matrix</td>
</tr>
<tr>
<td>in rotated axes: Problem 2.2, 209</td>
</tr>
<tr>
<td>rotation analytical : Problem 2.7, 213</td>
</tr>
<tr>
<td>Strain, 18</td>
</tr>
<tr>
<td>Strain energy, 50, 126</td>
</tr>
<tr>
<td>Stress, 15, 241</td>
</tr>
<tr>
<td>SU-8, 183</td>
</tr>
<tr>
<td>Surface charge, 143</td>
</tr>
<tr>
<td>Surface energy, 14</td>
</tr>
<tr>
<td>Surface energy</td>
</tr>
<tr>
<td>droplet: Problem 1.7, 202</td>
</tr>
<tr>
<td>Surface micromachining, 186</td>
</tr>
<tr>
<td>Surface tension, 6, 147, 278</td>
</tr>
<tr>
<td>Tangential stress, 60</td>
</tr>
<tr>
<td>Teflon, 188</td>
</tr>
<tr>
<td>Tensor of second rank, 16</td>
</tr>
<tr>
<td>Thermal conductivity, 159</td>
</tr>
<tr>
<td>Thermal oxidation, 181</td>
</tr>
<tr>
<td>Thermal resistance, 161</td>
</tr>
<tr>
<td>Thermocouple, 175</td>
</tr>
<tr>
<td>Thermopile, 175</td>
</tr>
<tr>
<td>TMAH, 185</td>
</tr>
<tr>
<td>Torsional actuator</td>
</tr>
<tr>
<td>capacitance change: Problem 5.9, 257</td>
</tr>
<tr>
<td>energy consumption: Problem 5.11, 260</td>
</tr>
<tr>
<td>Tuning fork, 133</td>
</tr>
<tr>
<td>Vibration of a cantilever, 128</td>
</tr>
<tr>
<td>Voltage drive, 97</td>
</tr>
<tr>
<td>Wafer bonding, 190</td>
</tr>
<tr>
<td>Weight, 2</td>
</tr>
<tr>
<td>Wet etching, 8</td>
</tr>
<tr>
<td>Wheatstone, 76, 77, 81</td>
</tr>
<tr>
<td>Wheatstone bridge</td>
</tr>
<tr>
<td>accelerometer: Problem 4.5 and 4.6, 243</td>
</tr>
<tr>
<td>Young–Dupré equation, 148</td>
</tr>
<tr>
<td>Young’s modulus, 20, 64</td>
</tr>
<tr>
<td>Young’s modulus</td>
</tr>
<tr>
<td>in rotated axes: Problem 2.3, 208</td>
</tr>
</tbody>
</table>