INDEX

4-hydroxyalkenal, 48

acyl CoA
 fragmentation patterns, 245
 functions, 368
 lipid synthesis and remodeling, 360
 solubility, 4
acyl phosphatidylglycerol, 194
acylcarnitine, 244
 lipid transport, 366
aggregates, 14, 92, 97, 310–311, 336–337
 concentration, 336
 homodimer, 324, 336
alkenyl lipids see plasmalogens and ether lipids
alkyl-and alkenylglycerols, 358–359
Alzheimer’s disease, 385
amphiphilic, 4
anionic lipids, 58
anionic lysoglycerophospholipids, 193
annotation, lipid species, 133–136
artifacts
 contaminants, 299
 extraction, 286, 299
 autoxidation, minimizing, 287
bacterial lipids, 436–438
baseline
 correction, 137
 noise, 338, 343
BHT see butylated hydroxytoluene
bile acids, 8–9, 25, 239
bioactive lipids, 5, 243–253
 signaling, 365
bioinformatics, 121
 modeling, 143
 pathway analysis, 140–143
 simulation, 140
 statistics, 134
 tools for LC-MS, 132
 visualization, 134
bis(monoacylglycerol)phosphate, 194
Bligh–Dyer extraction, 296
 modified, 296
building block
 concept, 7, 10
 database, 123
 monitoring, 102
BUME extraction, 298
butylated hydroxytoluene, 287
campesterol see plant steroid
cancer, 388
carbanion-based condensations of thioesters, 4
carbocation-based condensations of isoprene units, 4
carbon-13 de-isotoping, 293, 344–347
correction factors, 345, 346
carbon-13 isotopologue distribution, 98
cardiolipin
fragmentation patterns, 188
mass spectrometry, 21
mitochondrial function, 367, 382, 383
subclasses, 5
cardiomyopathy, 382
ceramide phosphoethanolamine, 10–11
cancer, 390
ceramide-1-phosphate, 71
ceramides
Alzheimer’s disease, 386
biosynthesis, 8
fragmentation patterns, 202–204
HILIC LC-MS, 71
lipid profiles of tissues, 323
mass spectrometry, 25, 202
molecular species, 323
nonalcoholic fatty liver disease, 383
signaling, 356
structure, 11
cerebrosides, 205–207 see also galactosylceramides and glucosylceramides
charge-driven fragmentation, 174
chemical noise see baseline noise
chlorinated lipids, 251
cholesterol (and other sterols)
mass spectrometry, 25
physical property, 4
structure, 4, 8, 12
cholesterol (and other sterol) esters
mass spectrometry, 25, 251
physical property, 4
structure, 8
choline glycerophospholipid
definition, 5
fragmentation patterns, 175–179
mass spectrometry, 25, 175
structure, 7
subclasses, 5
choline lysoglycerophospholipid, 159–161, 190–191
collision-induced dissociation, 28
collision energy, 104
gas pressure, 104
gas type, 108
voltage, 154
complex lipids, 5
contaminants see artifacts
cyclic phosphatidic acid, 196
data dependent acquisition, 322, 323, 326, 327
data interpretation
from cellular components, 360
from double bond location(s), 363–364
from functions, 360–368
from other omics, 369
from pathways, 355
from sample inhomogeneity, 368
data processing software (imaging MS)
Biomap, 263
DataCube Explorer, 264
FlexImaging, 264
imzML, 264
MITICS, 264
data processing software (lipidomics)
baseline correction, 137
LipidSearch, 137
LipidView, 137
MultiQuant, 139
MZmine 2, 136
shotgun lipidomics, 139
SimLipid, 138
XCMS, 136
database see lipid database
de-isotoping see carbon-13 deisotoping
derivatization, 91
desorption electrospray ionization
imaging, 269–270
principles, 43–45
diabetes, 380
diacylglycerols
artifacts, 286, 299
in biosynthesis, 359, 368
classification, 4, 7
derivatives, 220
fragmentation patterns, 218–222
mass spectrometry, 25, 218
nonalcoholic fatty liver disease, 384
regioisomers, 222
signaling, 366
structure, 10–11
digalactosyldiacylglycerols, 224–226, 407–408
dihydroceramide, 201, 356
diphosphatidylglycerol see cardiolipin
docosanoids
classification, 7
function, 383
double bond overlapping effect, 329, 346
dynamic range, 337–339
lower limit, 337
measurement, 337–338
multi-dimensional mass spectrometry, 338
upper limit, 337
eicosanoids
chiral LC-MS, 72
classification, 7
fragmentation patterns, 234–238
mass spectrometry, 234
reversed-phase LC-MS, 70
signaling, 366, 383
endocannabinoids
definition, 246
mass spectrometry, 246
schizophrenia and depression, 388
signaling, 366, 383
energy lipids, 5, 363
energy metabolism, 363
ethanolamine glycerophospholipid
definition, 5
fragmentation patterns, 180–183
mass spectrometry, 25, 180
structure, 6, 11
subclasses, 5
ethanolamine lysoglycerophospholipid, 191–193
ether lipids see also individual types
alkyl-and alkenylglycerols, 220, 223
artifactual hydrolysis (plasmalogens), 287
mass spectrometry, 223
plasmalogens see main heading
synthesis pathways, 358–359
extraction
artifacts, 299
contaminants, 299
gangliosides, 298
lipid chemical properties, 90
multiplexed extraction, 57, 89
pH condition, 89
polyphosphoinositides, 298
principles, 289–292
procedures, 295–299
solvent polarity, 90
storage of samples, 286
faradic current, 100
fat, 4
fatty acid-hydroxy fatty acids, 252
fatty acidomics, 238–241
fatty acids see also fatty acidomics
biosynthesis, 4, 343–344
branched, 240
classification, 4
compositions, 240
definition, 7
isomers, 239–240
mass spectrometry, 25, 229–241
non-esterified fatty acids, 229–241, 286
ozonolysis, 234
PUFA, 381
fatty acyls, 7
fatty alcohols, 7
fatty aldehydes, 7
fatty amides, 7
fatty esters, 7
fatty ethers, 7
fatty nitriles, 7
fluorenylmethoxycarbonyl (Fmoc) chloride, 57
Folch extraction, 295
fragmentation patterns see also mass spectrometry and individual lipid class
pattern recognition, 154
principle, 154
thermodynamics, 28, 154
galactolipids see glycosyldiacylglycerols
galactosylceramide
mass spectrometry, 25
structure, 11–12
galactosylsphingosine see psychosine
gangliosides
extraction from tissues, 299
mass spectrometry, 25, 208
solubility in water, 4
structure, 12
gas-phase basicity, 174
glucosylerceramide, 11
glycerolipids, 7, 10–11 see also individual glycerolipids
fragmentation patterns, 217–226
mass spectrometry, 217–226
glycerophospholipids, 7, 10–11 see also individual glycerophospholipids
fragmentation patterns, 173
synthesis pathways, 356
glycolipids, 7 see also sphingolipids or individual glycolipids
glycosphingolipids, 8
glycosphingolipids (neutral)
LC-MS analysis, 71
mass spectrometry, 25
structures, 11–12
glycosyldiacylglycerols see hexosyldiacylglycerols
glycosyl inositol phosphorylceramide, 408, 410
Golgi, 444
hexosyl diacylglycerols, 223–224
Human Metabolome Database, 131
hydrophilic (hydrophilicity), 3
hydrophobicity, 3–4, 336

ideal solution, 100
imaging mass spectrometry, 259–273
infusion conditions, 91–93
inositol phosphorylceramides, 210, 408–409
in-source fragmentation, 28, 57, 99, 154, 349
internal standards, 292–295
amounts, 294
estimation, 294
LC-MS, 295
minimal number, 347–348
selection, 292–293
intrasource separation, 26, 95, 108, 342
ionization variables, 98
flow rate, 100
spray voltage, 99
temperature, 98
ion-mobility mass spectrometry
drift time, 112
gangliosides, 114
imaging, 270–271
principle, 43
ion suppression, 341–343
dynamic, 323, 343
steady state, 338, 342
isotopologues, 305–306
isotopomers, 306

kinetic energy, 154

lactosylceramide, 11
LC-MS-based lipidomics
data-dependent analysis, 67
general, 65–66
hydrophilic interaction LC-MS, 71
identification, 73
normal-phase LC-MS, 68–69
reversed-phase LC-MS, 69–71
quantification, 321–329
selected ion monitoring, 66–67
selected reaction monitoring, 67
lipid, A 9, 411
lipid classes, definition, 4–5
lipid database
annotation, 135–136
building block, 123–129
Human Metabolome Database, 131
lipid MAPS, 122–123
LipidBlast, 129–130

METLIN, 130–131
lipid droplets, 445
lipid MAPS
database, 122–123
definition, 4
classification of lipids, 5
lipid molecular species, 5, 7
lipid rafts, 14, 447
LipidBlast, 129–130
lipidome
definition, 13
history, 14
lipidomics
Alzheimer’s disease, 385
applications, 379–380
bioinformatics, 121
cancer, 388
cardiovascular disease, 382
data processing software see main heading
database, 121
definition, 3, 13
diabetes, 380
history, 14
Golgi, 444
LC-MS see LC-MS-based lipidomics
lipid droplets, 445
lipid rafts, 447
mitochondrion, 449
Mycobacterium tuberculosis, 436–438
nonalcoholic fatty liver disease, 383
nucleus, 452
nutrition, 390
obesity, 380
organelles, 449–452
plants, 550–573
psychosis, 387
relation to metabolomics, 13
shotgun see shotgun lipidomics
subcategories, 13
technologies, 15
with other omics, 143
yeast, 428
lipids see also individual lipid classes
aggregates, 14
annotation, 135–136
definition, 3–4
intrasource separation, 108–110
LC separation, 111
ion-mobility separation, 112–114
remodeling, 358
spatial shape, 362
LipidSearch, 137
LipidView, 137
lipopolysaccharides, 4
INDEX

lipoprotein, 4, 13
liposome, 4
long-chain sphingoid bases see sphingoid bases
lysoglycerophospholipid
 artifacts, 286, 299
 cancer, 389
 extraction, 300
 fragmentation patterns, 190
 LC-MS analysis, 71
 signaling, 366, 368
 solubility, 4
 structure, 10–11
lysophosphatidic acid see anionic
lysoglycerophospholipids
lysophosphatidylcholine see choline
lysoglycerophospholipid
lysophosphatidylethanolamine see ethanolamine
lysoglycerophospholipid
lysosphingomyelin, 212

MALDI mass spectrometry
 atmospheric pressure, 31
 couple to (HP)TLC, 78
 imaging, 264–267
 lipidomics, 74
 matrix, 112
 matrix-free approaches, 78
 nanoparticles, 262
 neutral matrix, 31, 262
 novel matrix, 76–77
 principles, 30–31
mass analyzer
 general, 32–36
 ion trap, 35–36
 Orbitrap, 35–36
 quadrupole, 32–33
 Time-of-flight, 33–34
mass detector, 36
mass spectrometry, 28–45
 4-hydroxyalkenal, 248
 acyl CoA, 245
 acyl phosphatidylglycerol, 194
 acylcarnitine, 25, 244
 anionic lipids, 25
 anionic lysoglycerophospholipids, 193
 bis(monoacylgllycerol)phosphate, 194
 bioactive lipids, 243
 branched-chain fatty acids, 240
 cardiolipin, 188
 ceramides, 25, 202–204
 cerebrosides, 205–208
 charge properties, 24–28
 cholesterol esters, 25
 compounds with an ionic bond, 24
 compounds without charge, but polar, 24–25
 cyclic phosphatidic acid, 196
 definition, 21
diacylglycerols, 25, 218
digalactosyldiacylglycerols, 224, 407
eicosanoids, 234–238
electrospray, 22–23
endocannabinoids, 246
epox fatty acids, 239–240
fatty acid-hydroxy fatty acids, 252
fatty acids, 229
features, 28–30
glycosylceramides, 25
glycerolipids, 217–226
glycerophospholipids, 24–25, 173–196
glycosydicylglycerols see hexosydicylglycerols
glycosyl inositol phosphorylceramide, 554, 556
hexosydicylglycerols, 223
hydroxy fatty acids, 235, 239
imaging, 259–272
in-source fragmentation, 28
inositol phosphorylceramides, 210, 408–409
ion-mobility see ion-mobility mass spectrometry
keto fatty acids see eicosanoids
lysosphingomyelin, 212
monogalactosyldiacylglycerols, 407–408
monoglycerides, 218
multi-dimensional see multi-dimensional mass spectrometry
N-acyl amino acids, 247
N-acyl ethanolamine, 247
N-acyl phosphatidylethanolamine, 193
oxidized fatty acids see eicosanoids
phosphatidic acid, 187
phosphatidylglycerol, 186
phosphatidylinositol and derivatives, 184
phosphatidylserine, 185
polyunsaturated fatty acids, 229, 231
product ion analysis see fragmentation patterns
psychosine, 213
sphingoid bases, 210
sphingolipids, 201–213
sphingomyelin, 205
sphingosine-1-phosphate, 212
sterols, 251
sulfatide, 208
sulfolipids, 411
tandem (MS/MS), 37–42 see also fragmentation patterns
triacylglycerols, 25, 164, 222–223
weakly anionic lipids, 25
matrix application for imaging mass spectrometry
spotting, 262
spray, 262
sublimation, 263
membrane, 4
contact point, 362
fluidity, 362
fusion, 362
lips, 5
permeability, 362
metabolic pathways
glycerophospholipids, 356
plasmalogen, 358–359
sphingolipids, 8, 356
metabolomics, 13
methylglucose lipopolysaccharides, 436
METLIN, 130
microdomain, 14
mitochondrion, 449
modifier, 93–97
acidic, 93
basic, 95
neutral, 93
monoacylglycerols
classification, 4, 7
fragmentation patterns, 218
mass spectrometry, 218
monogalactosyldiacylglycerols, 407–408
monoglycosylceramides see hexosylceramides
MTBE extraction, 297
multi-dimensional mass spectrometry, 57–62,
64–65
two-step quantification, 317
multiple reaction monitoring see selected reaction monitoring
MultiQuant, 139
Mycobacterium tuberculosis lipidomics,
436–438
database, MycoMass, 437
methylglucose lipopolysaccharides, 437
mycolic acids, 437
mycolic acids, 437
MZmine 2, 136
nano-electrospray, 30
neutral loss scan, 13, 39
non-esterified fatty acids
artifacts, 286, 299
fragmentation patterns, 230–231
mass spectrometry, 230–231
nonalcoholic fatty liver disease, 383
osmium tetroxide treatment, 233
nonalcoholic fatty liver disease, 383
normal-phase LC-MS, 68–69
nucleus, 452
nutrition, 390
obesity, 380
oligoglycosylceramides, 208
omics, integration, 143
organelles, 443–454
definition, 443
Golgi, 444
lipid droplets, 445
mitochondrion, 449
nucleus, 452
oxidized fatty acids see eicosanoids
oxysterol
mass spectrometry, 251
structure, 12
ozonolysis, 234
phosphatidic acid
artifactual formation, 286, 299 see also
in-source fragmentation
fragmentation patterns, 187–188
in biosynthesis, 356, 359
mass spectrometry, 25, 187
structure, 10–11
subclasses, 5
phosphatidylcholine see choline
glycerophospholipid
phosphatidylethanolamine see ethanolamine
glycerophospholipid
phosphatidylethanolamine, N-acyl, 193
phosphatidylglycerol
fragmentation patterns, 186–187
mass spectrometry, 25, 186
structure, 6, 11
phosphatidylinositol and derivatives
extraction, 289–299
fragmentation patterns, 184–185
mass spectrometry, 25, 184
signaling, 366
structure, 6, 11
phosphatidylserine see serine glycerophospholipid
phosphatidylserine, N-acyl, 194
phospholipases, 261
phospholipase A, 358, 382
plant, 419–420
phospholipids see glycerophospholipids and
individual phospholipids
fragmentation patterns, 173–196
mass spectrometry, 173–196
structures, 6, 10–11
phosphosphingolipids, 8
phytanic acid, 240
plant lipidomics, 405–420
 development, 416
 food quality, 420
 gene functions, 417
 phospholipases, 419–420
 phosphorus deficiency, 416, 419
 stress-induced, 411
 temperature, 411
 wounding, 415
plant lipids see also plant lipidomics
digalactosyldiacylglycerol, 407–408
 extraction of tissues, 298
galactolipids, 407–408
glycosyl inositol phosphorylceramide, 408–409
inositol phosphorylceramide, 408–409
monogalactosyldiacylglycerol, 407–408
phytoglycosphingolipid see glycosyl inositol phosphorylceramide
sterols, 410
sulfolipids, 410
plasmalogens see also ether lipids
 acid sensitive, 90, 299
 Alzheimer’s disease, 386
 antioxidant, 367–368, 381
 chloro fatty aldehydes, 251
 fragmentation, 232, 236
 lipid rafts, 447
 membrane fusion, 367
 mitochondrion, 449
 nucleus, 453
 phospholipids, 5–6
 special functions, 367–368
 structures, 5–6
 synthesis pathways, 358–359
plasticisers, 286, 299
platelet-activating factor
 signaling, 366
 structure, 6
polyketides, 4, 7
polyphosphoinositides
 extraction from tissues, 298
 mass spectrometry, 245
 structure, 6
precautions
 autoxidation, 287
 storage and extraction, 286
precursor-ion scan, 13, 39
prenols, 2, 7
psychosine, 213
psychosis, 387
quality control, 354
 relative ratios, 355
quantification by mass spectrometry
 conditions, 309
 high mass accuracy, 327
 methods, 312–329
 principles, 308
 tandem MS, 312, 340
 (quasi)molecular ion, 23, 28
ratiometric comparison, 28, 97, 309, 328, 344
reproducibility, 354
response factors, 306, 309–312
reversed-phase LC-MS, 69–71
retinoic acid, 239
saccharolipids, 9
sample storage, 286
sampling, 286
 inhomogeneity, 368
secondary ion mass spectrometry
 imaging, 267–269
 principle, 267
secosteroids see vitamin D
selected ion monitoring, 66, 70
quantification, 321
selected reaction monitoring, 39–40, 67, 70
quantification, 324
transition, 39, 324
serine glycerophospholipid
 fragmentation patterns, 185–186
 functions, 368
 mass spectrometry, 21, 185
 structure, 5
 subclasses, 4
shotgun lipidomics
 approaches, 56–65
 definition, 53
 device, 54–55
 features, 55–56
 quantification, 312–321
 software, 136
SimLipid, 138
simple lipids, 5
sitosterol see plant steroid
solid-phase extraction columns
 gangliosides, 291
 glycerophospholipid separation, 71
 prostaglandins, 291
solvents
 contaminants, 299
 quality, 350
sphinganine, 10, 71
 signaling, 365
sphingoid bases
 biosynthesis, 8
sphingoid bases (Continued)
 fragmentation patterns, 210
 mass spectrometry, 210
 structures, 12
sphingolipids see also individual sphingolipids
 definition, 8
 mass spectrometry, 201–213
 separation, 71
 signaling, 365
 structures, 11–12
 subclasses, 7
 synthesis pathways, 356
sphingomyelin
 ceramide derivatives, 11–12
 mass spectrometry, 25, 161, 205
 fragmentation pattern, 161, 205
 structure, 11–12
sphingosine, 10
 signaling, 365
sphingosine-1-phosphate, 212
 signaling, 365
spray tip, 350
steroids
 classification, 5
 signaling, 366
 structure, 8, 13
stereospecific numbering, 5, 10
sterols see cholesterol and esters
stigmasterol see plant steroid
storage of tissues and lipids, 286, 299
subclass, definition, 5, 7
sulfatide
 Alzheimer’s disease, 386
 fragmentation patterns, 208
 mass spectrometry, 25
 structure, 11–12
sulfo-glucosylceramides see sulfatide
sulfoquinovosyl diacylglycerols see plant sulfolipids
synthesis pathways
 glycerolipids, 359
 glycerophospholipids, animals, 356–358
 glycerophospholipids, bacteria, 356–358
 glycerophospholipids, plants, 356–358
 glycerophospholipids, yeast, 356–358
 inter-relationship, 360
 plasmalogens, 358–359
 sphingolipids, 356
tandem mass spectrometry
 neutral loss scan, 39
 precursor-ion scan, 39
 product ion analysis, 37–38
 relationship between each other, 40–42
 selected reaction monitoring, 39–40
targeted lipidomics, 326
thermodynamics, 28, 154
triacylglycerols
 classification, 5, 7
 fragmentation pattern, 164, 222
 mass spectrometry, 25, 164, 222
 molecular species, 164
 nonalcoholic fatty liver disease, 384
 physical property, 4
 reversed-phase chromatography, 69
 silver ion LC-MS, 72
 structure, 10–11
two-step quantification, 317
ultra-performance LC, 70
UPLC see ultra-performance LC
vesicles, 4
vitamin D 9, 368
waxes, 4, 368
XCMS, 136
yeast lipidomics, 428
 lipid biosynthesis, 432
 lipid classes, 431, 433
 protocol, 428
 strain comparison, 431