Contents

About the Authors .. xi
Preface .. xiii
Acknowledgements .. xv

1 Various Cables Used in Practice ... 1
 Teruo Ohno
 1.1 Introduction .. 1
 1.2 Land Cables .. 3
 1.2.1 Introduction .. 3
 1.2.2 XLPE Cables ... 4
 1.2.3 SCOF Cables .. 9
 1.2.4 HPOF Cables ... 10
 1.3 Submarine Cables .. 11
 1.3.1 Introduction ... 11
 1.3.2 HVAC Submarine Cables 11
 1.3.3 HVDC Submarine Cables 12
 1.4 Laying Configurations ... 13
 1.4.1 Burial Condition ... 13
 1.4.2 Sheath Bonding .. 14
 References ... 19

2 Impedance and Admittance Formulas 21
 Akihiro Ametani
 2.1 Single-core Coaxial Cable (SC Cable) 22
 2.1.1 Impedance .. 22
 2.1.2 Potential Coefficient 25
 2.2 Pipe-enclosed Type Cable (PT Cable) 27
 2.2.1 Impedance .. 27
 2.2.2 Potential Coefficient 29
 2.3 Arbitrary Cross-section Conductor 31
 2.3.1 Equivalent Cylindrical Conductor 31
 2.3.2 Examples .. 32
Contents

2.4 Semiconducting Layer Impedance
 2.4.1 Derivation of Impedance
 2.4.2 Impedance of Two-layered Conductor
 2.4.3 Discussion of the Impedance Formula
 2.4.4 Admittance of Semiconducting Layer
 2.4.5 Wave Propagation Characteristic of Cable with Core Outer
 Semiconducting Layer
 2.4.6 Concluding Remarks

2.5 Discussion of the Formulation
 2.5.1 Discussion of the Formulas
 2.5.2 Parameters Influencing Cable Impedance and Admittance

2.6 EMTP Subroutines “Cable Constants” and “Cable Parameters”
 2.6.1 Overhead Line
 2.6.2 Underground/Overhead Cable

Appendix 2.A Impedance of an SC Cable Consisting of a Core, a Sheath and an Armor
Appendix 2.B Potential Coefficient
Appendix 2.C Internal Impedances of Arbitrary Cross-section Conductor
Appendix 2.D Derivation of Semiconducting Layer Impedance
References

3 Theory of Wave Propagation in Cables

3.1 Modal Theory
 3.1.1 Eigenvalues and Vectors
 3.1.2 Calculation of a Matrix Function by Eigenvalues/Vectors
 3.1.3 Direct Application of Eigenvalue Theory to a Multi-conductor System
 3.1.4 Modal Theory
 3.1.5 Formulation of Multi-conductor Voltages and Currents
 3.1.6 Boundary Conditions and Two-port Theory
 3.1.7 Problems

3.2 Basic Characteristics of Wave Propagation on Single-phase SC Cables
 3.2.1 Basic Propagation Characteristics for a Transient
 3.2.2 Frequency-dependent Characteristics
 3.2.3 Time Response of Wave Deformation

3.3 Three-phase Underground SC Cables
 3.3.1 Mutual Coupling between Phases
 3.3.2 Transformation Matrix
 3.3.3 Attenuation and Velocity
 3.3.4 Characteristic Impedance

3.4 Effect of Various Parameters of an SC Cable
 3.4.1 Buried Depth h
 3.4.2 Earth Resistivity ρ_e
 3.4.3 Sheath Thickness d
 3.4.4 Sheath Resistivity ρ_s
 3.4.5 Arrangement of a Three-phase SC Cable
Contents

3.5 Cross-bonded Cable
 3.5.1 Introduction of Cross-bonded Cable
 3.5.2 Theoretical Formulation of a Cross-bonded Cable
 3.5.3 Homogeneous Model of a Cross-bonded Cable
 3.5.4 Difference between Tunnel-installed and Buried Cables

3.6 PT Cable
 3.6.1 Introduction of PT Cable
 3.6.2 PT Cable with Finite-pipe Thickness
 3.6.3 Effect of Eccentricity of Inner Conductor
 3.6.4 Effect of the Permittivity of the Pipe Inner Insulator
 3.6.5 Overhead PT Cable

3.7 Propagation Characteristics of Intersheath Modes
 3.7.1 Theoretical Analysis of Intersheath Modes
 3.7.2 Transients on a Cross-bonded Cable
 3.7.3 Earth-return Mode
 3.7.4 Concluding Remarks

References

4 Cable Modeling for Transient Simulations
 Teruo Ohno and Akihiro Ametani

4.1 Sequence Impedances Using a Lumped PI-circuit Model
 4.1.1 Solidly Bonded Cables
 4.1.2 Cross-bonded Cables
 4.1.3 Derivation of Sequence Impedance Formulas

4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations

4.3 Dommel Model

4.4 Semlyen Frequency-dependent Model
 4.4.1 Semlyen Model
 4.4.2 Linear Model

4.5 Marti Model

4.6 Latest Frequency-dependent Models
 4.6.1 Vector Fitting
 4.6.2 Frequency Region Partitioning Algorithm

References

5 Basic Characteristics of Transients on Single-phase Cables
 Akihiro Ametani

5.1 Single-core Coaxial (SC) Cable
 5.1.1 Experimental Observations
 5.1.2 EMTP Simulations
 5.1.3 Theoretical Analysis
 5.1.4 Analytical Evaluation of Parameters
 5.1.5 Analytical Calculation of Transient Voltages
 5.1.6 Concluding Remarks
Contents

5.2 Pipe-enclosed Type (PT) Cable–Effect of Eccentricity
- 5.2.1 Model Circuit for the EMTP Simulation
- 5.2.2 Simulation Results for Step-function Voltage Source
- 5.2.3 FDTD Simulation
- 5.2.4 Theoretical Analysis
- 5.2.5 Concluding Remarks

5.3 Effect of a Semiconducting Layer on a Transient
- 5.3.1 Step Function Voltage Applied to a 2 km Cable
- 5.3.2 $5 \times 70 \mu s$ Impulse Voltage Applied to a 40 km Cable

References

6 Transient on Three-phase Cables in a Real System

Akihiro Ametani

6.1 Cross-bonded Cable
- 6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable
- 6.1.2 Effect of Cross-bonding
- 6.1.3 Effect of Various Parameters
- 6.1.4 Homogeneous Model (See Section 3.5.3)
- 6.1.5 PAI-circuit Model

6.2 Tunnel-installed 275 kV Cable
- 6.2.1 Cable Configuration
- 6.2.2 Effect of Geometrical Parameters on Wave Propagation
- 6.2.3 Field Test on 275 kV XLPE Cable
- 6.2.4 Concluding Remarks

6.3 Cable Installed Underneath a Bridge
- 6.3.1 Model System
- 6.3.2 Effect of an Overhead Cable and a Bridge
- 6.3.3 Effect of Overhead Lines on a Cable Transient

6.4 Cable Modeling in EMTP Simulations
- 6.4.1 Marti’s and Dommel’s Cable Models
- 6.4.2 Homogeneous Cable Model (See Section 3.5.3)
- 6.4.3 Effect of Tunnel-installed Cable

6.5 Pipe-enclosed Type (PT) Cable
- 6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable
- 6.5.2 Measured Results
- 6.5.3 FTP Simulation

6.6 Gas-insulated Substation (GIS) – Overhead Cables
- 6.6.1 Basic Characteristic of an Overhead Cable
- 6.6.2 Effect of Spacer in a Bus
- 6.6.3 Three-phase Underground Gas-insulated Line
- 6.6.4 Switching Surges in a 500 kV GIS
- 6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable

Appendix 6.A
Appendix 6.B
References
Contents ix

7 Examples of Cable System Transients 297
Teruo Ohno

7.1 Reactive Power Compensation 297

7.2 Temporary Overvoltages 298
7.2.1 Series Resonance Overvoltage 298
7.2.2 Parallel Resonance Overvoltage 310
7.2.3 Overvoltage Caused by System Islanding 314

7.3 Slow-front Overvoltages 317
7.3.1 Line Energization Overvoltages from a Lumped Source 317
7.3.2 Line Energization Overvoltages from a Complex Source 329
7.3.3 Analysis of Statistical Distribution of Energization Overvoltages 332

7.4 Leading Current Interruption 341

7.5 Zero-missing Phenomenon 342
7.5.1 Zero-missing Phenomenon and Countermeasures 342
7.5.2 Sequential Switching 344

7.6 Cable Discharge 346
References 347

8 Cable Transient in Distributed Generation System 351
Naoto Nagaoka

8.1 Transient Simulation of Wind Farm 351
8.1.1 Circuit Diagram 351
8.1.2 Cable Model and Dominant Frequency 352
8.1.3 Data for Cable Parameters 354
8.1.4 EMTP Data Structure 359
8.1.5 Results of Pre-calculation 363
8.1.6 Cable Energization 364

8.2 Transients in a Solar Plant 374
8.2.1 Modeling of Solar Plant 374
8.2.2 Simulated Results 379
References 388

Index 391