An 80-year-old man with a history of nonmelanoma skin cancers of the head and neck presented for treatment of a basal cell carcinoma of the nose. Physical examination revealed a poorly defined, exophytic, ulcerated nodule of the mid-dorsal nose. Given the size, location, and ill-defined margins of the tumor, Mohs micrographic surgical excision was indicated. The tumor was excised in three stages with microscopic control. The final defect was full thickness of the dermis, sparing the underlying muscle and measuring 3.2 × 2.4 cm on the mid-dorsal, supratip, and lateral aspects of the nose (Figure 1). How would you repair this defect?

Resolution

This is an interesting case in that a large defect on the dorsal nose was created by tumor excision, resulting in a challenging reconstructive dilemma. Our patient was experienced with reconstructive options following Mohs micrographic surgery given his extensive history of facial skin cancers. His concern with the ultimate cosmetic outcome, coupled with his insistence on the ease of postoperative care and rapidity of healing, was the basis of the resolution of this reconstructive conundrum.

Perhaps the easiest option in this situation would be a full-thickness skin graft (FTSG). FTSGs are useful for larger skin defects, given their simplicity, good cosmetic outcome, and lack of distortion of adjacent structures. The disadvantages of full-thickness grafting include the need for a donor site offering enough similar quality of skin for coverage, the possibilities of poor graft take and
poor color and texture match at the recipient site, and the need for a bulky bolster dressing for at least a week. In addition, given the depth and size of the defect at hand, a FTSG from the pre- or postauricular region may have resulted in a large secondary defect, which may have been difficult to close.

Second-intention healing is a time-honored method of healing that is especially useful for older patients with loose skin. Granulation and epithelialization of defects are often expected in 6 to 12 weeks, and the cosmetic results are often excellent. The advantages of this technique lie in its simplicity and lack of need for further surgical procedures for reparative needs. The disadvantages include the length of time for complete healing and the need for prolonged daily wound care. In addition, the cosmetic outcome following contracture of tissue with large defects is difficult to predict. As such, wound healing on convex surfaces such as the nose may result in hypertrophic scarring in the vicinity of free tissue margins and suboptimal outcomes.

A forehead flap for repair of large defects of the dorsal nose is another option for postoperative reconstruction. Many different designs of this two-stage flap have been described, but the paramedian or midline flaps are most commonly used and often give the best overall results. The vascular supply to these flaps is excellent, with good flap viability. A second procedure 2 to 3 weeks later is necessary to divide the resulting pedicle, and additional procedures may be necessary to debulk the flap further. A secondary donor site on the forehead is created that may be closed primarily but usually results in a visible scar. Second-intention healing may be necessary for larger secondary forehead donor sites. The main advantage of this reconstructive option is the large amount of skin that the forehead provides and its good color and texture match for nasal skin. Precise and detailed explanation of postoperative wound care and large bandages that may be necessary to cover what the patient may perceive to be a disfiguring flap on the face must be understood prior to pedicle take-down by the patient and family.

Our experience with vertical linear closures for defects of the dorsal nose has been outstanding, and, as such, it has become our closure of choice for midline and paramedian dorsal nasal lesions. The long-term postoperative cosmetic results are so good that we have tried to incorporate this closure for larger defects in this anatomic location. Tension resulting from closing larger defects on the nasal dorsum may cause elevation of the nasal ala. Usually, this elevation is temporary, with improvement and resolution over the next few weeks. When there is a slight permanent residual raising of the ala, patients perceive an enhanced cosmetic look and an ease of breathing through the nostrils, which may help with snoring problems at night. Another result of the midline closure is thinning of the nasal tip, which results from the removal of the inferior dog-ear from this region. This has also been perceived by patients as a potential cosmetic benefit.

When repairing defects of the nasal dorsum, undermining of the lateral sides of the defect can be done at the subdermal level or above the cartilage and bone of the nasal sidewall. At this deep level, the undermining can be safely carried out onto the maxillary bone and cheek. This undermining provides a large amount of movement of skin medially. When using this wide undermining technique, even larger defects can be closed on the nasal dorsum. The vertical closure technique is thus more versatile for defects of larger sizes, which can be closed with excellent cosmetic results.

When a defect on the nasal dorsum is so large that an attempt to close primarily is unsuccessful, the superior or inferior dog-ear can be used as an FTSG to complete the closure. We initially tried to close this defect as a vertical linear closure but found that the superior dog-ear was needed as an FTSG to complete the closure. This technique is demonstrated in this case report.

In this case, the large defect following Mohs micrographic surgery could not be closed primarily despite wide lateral undermining (Figure 2). We chose to reconstruct this defect with a linear closure combined with a local Burow’s (dog-ear) graft. A dog-ear was removed superiorly, and the resulting defect was closed in a linear side-to-side fashion using 5-0 subcutaneous buried poliglecaprone (Monocryl) sutures (Figure 3).

The Burow’s (dog-ear) graft was then sutured centrally into the area of the defect that could not be closed primarily. To graft the dog-ear, 6-0 nylon (Ethilon) running sutures were used (Figure 4), and a bolster dressing was applied. The bolster dressing and sutures were removed after 1 week; the graft was pink, with 100% take (Figure 5).

Four-week follow-up results are shown in Figure 6. Elevation of the nasal ala is imperceptible, and the nasal passages are widely patent (Figure 7). The use of
CONUNDRUM 1 Combined Linear Closure and Burow’s Graft for a Dorsal Nasal Defect

Figure 2 Anterior view showing inability to completely close the defect primarily.

Local-tissue skin grafts from the nose allows for excellent cosmesis, with precise color and texture match. The patient was very pleased with the appearance of his nose and has not required further follow-up for scar revision.

Conundrum keys

- Large defects of the nose can be particularly challenging, but there are a vast number of reconstructive options for repair.

Figure 3 Removal of superior and inferior dog-ears prior to use as a full-thickness skin graft centrally.

Figure 4 Anterior (a) and lateral (b) views of combined linear closure with a Burow’s graft centrally.
When choosing a reconstructive option, both the patient and the surgeon must understand the pre- and postoperative implications, complications, and potential outcomes of a chosen reparative option.

- Linear closures, when feasible, are an outstanding option for dorsal nasal defects.
- For larger dorsal nasal defects that are not amenable to complete primary closure, local Burow’s grafts provide superb color and texture match and facilitate an excellent cosmetic outcome.

Additional readings

Commentary on conundrum 1

This case highlights several important principles in caring for patients with skin cancer. The first has to do with patients’ involvement in choosing the reconstruction. As illustrated by the authors, there are a number of viable options for closure of this defect and early on, the authors imply that the patients were consulted regarding their goals and expectations for their repair. Every cutaneous surgeon has his or her own style. Some surgeons involve patients and allow them to play a significant part in determining which of several options they would prefer, while others make the decision independently. Neither extreme is ideal; soliciting the patient’s participation is one facet of informed consent, and requires taking the time to assess patients’ capacity to provide input and then clarifying their expectations. Some patients will gladly leave the entire decision process up to the surgeon, while others will give an opinion on how extensive a surgery they are willing to undergo and the level of cosmesis they require. This mutual participation process is invaluable in obtaining a reconstructive result that patients will find acceptable. However, it is surprising how often patients express a strong opinion on how involved a procedure they are willing to undergo, which may differ from the preconception of the surgeon. It would be advisable to have at least a preliminary conversation with patients regarding their goals and expectations.

The advantages and disadvantages of full-thickness skin graft closure are well known. The most common cause of a poor outcome with this method is the failure of continuous graft contact with the wound bed – which is usually avoidable – and if it occurs, will lead to an undesirable cosmetic result. It should be noted that in a case, such as this, in which the adjacent skin has been partially advanced, the depth of the wound base is often greater relative to the adjacent skin edges than it would have been otherwise. It is therefore even more important to assure graft contact with the wound base as there is a greater risk of unwanted lifting of these grafts from their recipient bed. Bolster dressings and basting sutures are effective ways to minimize this risk.

The second most common cause of partial graft failures is frictional trauma that avulses an area of the graft. Avulsion injury is most often seen when grafts are located on more prominent or projecting facial sites such as the nose and ears, but can occur in any location. This type of injury most frequently occurs within a month of the procedure. After the initial dressing has been removed, it is prudent to advise the patient to wear a protective, cushion-like bandage for about a month after the surgery to minimize the risk of this complication.

The authors’ description of the advantages of linear closure on the nose, as described by Cook and Zitelli, is excellent. Critical to optimization of this technique is extensive undermining of the skin lateral to the defect. Deep-plane undermining just above the periosteum and cartilage is most effective on the nose. As described, undermining carried out beyond the nasal sidewall onto the cheek often affords a quantum increase in tissue movement. A previously unclosable wound can often achieve reapproximation merely by extending the plane of undermining onto the maxillary bone and cheek.

The authors also describe a “plan B” intraoperative decision. While it is always preferable to have a well-designed and workable plan preoperatively, the experienced surgeon realizes that having a backup plan, even one devised intraoperatively, can be invaluable.

As noted in Figure 3, the defect was reduced in size by 70%, which means that the majority of the wound was closed with perfectly matching adjacent skin. The concept of minimizing wound size when placement of a graft is contemplated is appropriate in most situations because minimizing graft size is generally desirable. However, when deciding upon the size of the graft to be harvested, the actual extent of the tissue loss, not the gaping wound, should be taken into consideration. The ideal scenario is to have the smallest possible graft filling the defect – with the graft stretched to its natural state of expansion. Assessing the true extent of tissue loss, which is usually less than the size of the defect due to the gaping phenomenon, is therefore critical because a correctly sized graft is esthetically superior to the one that is either oversized and redundant, or undersized and stretched to an unnatural degree.

In summary, on tight skin or in areas where tissue conservation needs to be at a premium, a Burow’s graft combined with a partial closure can be an ideal solution. It is
important to note, however, that Burow’s grafting necessi-
tates a high degree of confidence that tumor-free margins
have been obtained. A wound resulting from Mohs
surgery fosters the ideal scenario for use of such adjacent
grafts. However, when a wound results from exci-
sional removal with less meticulous tissue examination
compared with the Mohs technique, the option of a
Burow’s graft should be considered much more cautiously,
as unwittingly grafting tumor-containing skin into such
a defect may result in a relatively rapid recurrence.

Commentary by Dr. Brodland