Contents

1. Introduction i
 1.1. Objectives, Intended Audience and Scope of This Book 1
 1.1.1. Objectives 1
 1.1.2. Intended Audience 2
 1.1.3. Scope 2
 1.2. Integration of this Guidance with Other CLPS Guidance 2
 1.3. Organization of the Book 3
 1.4. History of Inherent Safety 5

2. The Concept of Inherent Safety 9
 2.1. Process Risk Management and Inherent Safety 9
 2.2. Inherent Safety Defined 11
 2.3. Inherently Safer Approaches 13
 2.4. Layers of Protection 13
 2.5. Levels of Inherent Safety 15
 2.6. Worked Example 17
 2.7. Summary 19

3. The Role of Inherently Safer Concepts in Process Risk Management 21
 3.1. Integrating Inherent Safety in Process Risk Management Systems 21
 3.2. Timing for Consideration of Inherently Safer Options 24
 3.3. Inherent Safety Constraints 25
 3.4. Resolving Inherent Safety Issues 26
 3.5. Inherently Safer Strategies 27
 3.6. Summary 27

4. Inherently Safer Strategies 29
 4.1. Definition of Inherently Safer Strategies 29
 4.2. Minimize 30
 4.2.1. Reduction 32
 4.2.2. Continuous/Stream Reactors 33
 4.2.3. Tubular Reactors 33
6. Human Factors

6.1 Overview
6.2 Operability and Personnel Safety
6.3 Maintainability
6.4 Error Prevention
6.5 Error Recovery
6.6 System Audits
6.7 Organizational Culture
6.8 Summary

7. Inherent Safety and Security

7.1 Introduction
7.2 Chemical Security Risk
7.3 Security Strategies
7.4 Countermeasures
7.5 Assessing Security Vulnerabilities
7.6 Inherent Safety and Chemical Security
7.7 Limitations to Implementing ES Conceptual Security Management
7.8 Conclusions

8. Implementation/Inherent Safety Master Design

8.1 Introduction
8.2 Management Systematic Approach for ES
8.3 Education and Awareness
8.3.1 Making ES Corporate Philosophy
9.4.1 Water Disinfection
9.5 Inherent Safety and Economic Conflicts
9.5.1 Existing Plants—Operational vs. re-investment economics in a capital intensive industry
9.5.2 Often more economical, but not necessarily
9.6 Tools for understanding and resolving conflicts
9.6.1 Tools for understanding and resolving conflicts
9.7 Measuring Inherent Safety characteristics
9.7.1 Dow Fire and Explosion Index
9.7.2 Dow Chemical Exposure Index
9.7.3 MIF index
9.7.4 Proposed Inherent Safety indices
9.8 Summary
10. Inherently Safer Design Regulatory Initiatives
10.1 Inherent Safety Regulatory Developments and Issues
10.2 Performance with I2R Regulations
10.2.1 Inherently Safer Systems Requirements
10.2.2 California Climate Change
10.2.3 New Jersey Toxic Catastrophic Prevention Act (TCPA) and Prescriptive Order for Chemical Plant Security
10.3 Issues in Regulating Inherent Safety
10.3.1 Consistent Understanding of Inherent Safety
10.3.2 Metal Conta
10.4 Summary
11. Worked Examples and Case Studies
11.1 Introduction
11.2 Application of an Inherent Safety Strategic Approach to a Process
11.3 Case studies from Carbores, et al.
11.3.1 An Endothermic Batch Reaction
11.3.2 Refrigeration of Monomethylamine
11.3.3 Elimination of a Chlorine Water Treatment System
11.3.4 Reduction of Chlorine Transfer Line Size
11.3.5 Substitution of Aqueous Ammonia for Ammonia Ammonia
11.3.6 Limitation of Magnitude of Deviations for Aqueous Ammonia
11.3.7 A Vessel Entry Example
11.4 Process Route Selection—Final R&D Example
11.5 Example of an Inherently Safer Study of an Steam Production Facility
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6 Case Study: Hospital</td>
<td>271</td>
</tr>
<tr>
<td>11.7 Summary: In Brief: Examples by IS Strategy</td>
<td>279</td>
</tr>
<tr>
<td>11.8 Additional Literature: Giving Examples of Inherently Safer Operations</td>
<td>285</td>
</tr>
<tr>
<td>12. Literature: Initiatives</td>
<td>287</td>
</tr>
<tr>
<td>12.1 Incorporating Inherently Safer Design into Process Safety Management</td>
<td>287</td>
</tr>
<tr>
<td>12.2 Encouraging Invention within the Chemical and Chemical Engineering Community</td>
<td>288</td>
</tr>
<tr>
<td>12.3 Including Inherent Safety into the Education of Chemists and Chemical Engineers</td>
<td>288</td>
</tr>
<tr>
<td>12.4 Developing Inherently Safer Design: Databases and Libraries</td>
<td>288</td>
</tr>
<tr>
<td>12.5 Developing Tools to Apply Inherently Safer Design:</td>
<td>289</td>
</tr>
<tr>
<td>12.5.1 The Broad View and Life Cycle Costs of Alternatives</td>
<td>289</td>
</tr>
<tr>
<td>12.5.2 Benefits of Reliability Analysis</td>
<td>290</td>
</tr>
<tr>
<td>12.5.3 Potential Energy</td>
<td>290</td>
</tr>
<tr>
<td>12.5.4 A Table of Distances</td>
<td>290</td>
</tr>
<tr>
<td>12.5.5 Quantitative Measures of Inherent Safety</td>
<td>291</td>
</tr>
<tr>
<td>12.5.6 Other Suggestions</td>
<td>291</td>
</tr>
<tr>
<td>Appendix A: Inherently Safer Methodology (Checklist)</td>
<td>299</td>
</tr>
<tr>
<td>Appendix B: Inherent Safety Analysis: Appendices</td>
<td>301</td>
</tr>
<tr>
<td>10.2 Inherent Safety Analysis: Independent Process Hazard Analysis (PHA)</td>
<td>334</td>
</tr>
<tr>
<td>10.3 Inherent Safety Analysis: Integration Process Hazard Analysis (PHA)</td>
<td>341</td>
</tr>
<tr>
<td>Appendix C: Applying Inherent Safety to Which Process: Safety</td>
<td>345</td>
</tr>
<tr>
<td>Glossary</td>
<td>3461</td>
</tr>
<tr>
<td>References</td>
<td>357</td>
</tr>
<tr>
<td>Chapter References</td>
<td>357</td>
</tr>
<tr>
<td>Key Literature in Inherent Safety and Additional Reading</td>
<td>357</td>
</tr>
<tr>
<td>Index</td>
<td>398</td>
</tr>
</tbody>
</table>