INDEX

A
Absorption of sound, see Sound absorption
Acceleration level, 20
ACGIH, see American Conference of Governmental Industrial Hygienists
Acoustical efficiency (throttling valves), 647–649
Acoustical enclosures, 521–552. See also
 Small enclosures, sound in
 close-fitting, sealed enclosures, 531–537
 for cooling towers, 667
 for feed pumps, 672
 for industrial gas turbines, 673
 intermediate-size enclosures, 537–538
 large, with interior sound-absorbing treatment, 540–551
 effect of sound-absorbing treatment, 547, 548
 flanking transmission through floor, 549, 550
 inside-outside vs. outside-inside transmission, 549–550
 key parameters influencing insertion loss, 544–545
 leaks, 547, 548
 machine position, 549
 machine vibration pattern, 549
 model for insertion loss at high frequencies, 541–544
 wall panel parameters, 545–547
 large, without internal sound-absorbing treatment, 538–540
 partial, 551–552
 performance of:
 insertion loss as measure for, 522–523
 measures for, 518–519
 qualitative description, 523–525
 size of, 521
 small, sealed enclosures, 525–531
 for transformers, 679
Acoustical impedance, 39–41
 characteristic 40
 complex 39–40
 specific 40
Acoustically induced vibrations and rattles, 905, 907
Acoustical levels, 12–24
Acoustical modal response, 149–151
Acoustical privacy, 203–204. See also
 Speech privacy
Acoustical standards, see Standards
Acoustical terminology, 1–41, 911
Acoustical wave equation, 25–34, 149
Active machinery isolation, 840–845
Active noise and vibration control (ANVC), 721–849
 actuators:
 locations of, 806–808
 number of, 804–806
 placement and selection of, 722–730
 sizing of, 808–809
 controller architecture and performance simulations, 814–817
 control sensors/architectures, 730–732
 design considerations, 800–801
 digital filters, 740–751
 adaptive design for, 749–751
 description of, 741–747
 optimal design for, 747–749
 feedback control systems, 779–800
 alternate suboptimum control filter estimation, 784–800
 basic architecture, 779–781
 optimal control filter estimation, 781–784
 feedforward control systems, 751–779
 adaptive control, 760–765
 basic architecture, 751–754
 control of aliasing effects, 765–769
 extension to MIMO systems, 777–779
 optimal control filter estimation, 754–760
 system identification, 769–777
 identifying performance goals for, 801–804
 implementation and testing of, 827–829
 performance expectations, 732–733
 placement and selection of control sources/actuators, 722–730
 prototype ANVC systems, 733–740
 active machinery isolation, 840–845
 airborne noise in high-speed patrol craft, 845–849
 MIMO feedforward active locomotive exhaust with passive component, 829–840

943
INDEX

Active noise and vibration control (ANVC)
(continued)
sensors:
 control sensors/architectures, 730–732
 number/location of, 809–814
 performance of, 813–814
 reference, 809, 812–813
 residual, 809–812
Actuators (ANVC):
 locations of, 806–808
 number of, 804–806
 placement and selection of, 722–730
 sizing of, 808–809
Actuator channels, 806
Adaptive control algorithm, 760–765
A/D converters, see Analog-to-digital converters
Added mass, 348, 355, 383–384
Added mass coefficient, 348
Added mass/fluid density, 348
Added volume, 348, 355
Admittance, 41
Aeroaoustical sources, 611–616
 aerodynamic dipoles, 612–613
 aerodynamic monopoles, 611–612
 aerodynamic quadrupoles, 613–614
 of fractional orders, 614
 influence of source motion, 615–616
 aerodynamic dipoles, 614
 aerodynamic monopoles, 614
 aerodynamic sound, 611, 643–656. See also Gas flow noise
AFOSHSTD (Air Force Occupational, Safety, and Health Standard), 881
AI, see Articulation index
Air bag deployment noise, 869
Airborne excitation, simultaneous dynamic excitation and, 462–465
Airborne sound (noise):
 outdoors, 121
Air compressors, predicting noise from, 660–662
Air-Conditioning and Refrigeration Institute (ARI), 911
Air-cooled condensers, predicting noise from, 667–668
Aircraft interior noise control, 736
Airflow velocity (HVAC systems), 701–703
 fans, 707
 near grilles, 701–702
 terminal boxes/valves, 708–709
Airfoils:
 “singing” of, 640
 sound generation by, 639–640
Air Force Occupational, Safety, and Health Standard (AFOSHSTD), 881
Air mounts, 739
Air Movement and Control Association (AMCA), 670
Air pressure ratios, 648
Air spring isolators, 577
Aliasing, 817
 active control of, 765–769
 in spectral analysis, 54
All zero filters, 743
AMCA (Air Movement and Control Association), 670
American Conference of Governmental Industrial Hygienists (ACGIH), 871, 881, 882
American National Standards Institute (ANSI), 878, 911
American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), 706, 711, 911
American Society of Mechanical Engineers (ASME), 911
American Society of Testing and Materials (ASTM), 911
American system of units, 935–937
Amplification at resonance, 583
Analog-to-digital (A/D) converters, 741–742, 766, 767
 for ANVC systems, 819–825
 sampling process of, 817
Antialiasing filters, 54, 57, 765–769
 and ANVC performance, 815
 selection of, 817–819
ANVC, see Active noise and vibration control
Applications Handbook (ASHRAE), 711
Architectural acoustics, standards for, 930–931
Architectural noise control in buildings, standards for, 926–931
Area sources, 122
ARI (Air-Conditioning and Refrigeration Institute), 911
ARMA filters, 744
Armed forces sound exposure criteria, 863, 867–868, 874
Articulation index (AI), 203–204
ASHRAE, see American Society of Heating, Refrigerating, and Air-Conditioning Engineers
ASHRAE handbooks, 706, 711
ASME (American Society of Mechanical Engineers), 911
ASTM (American Society of Testing and Materials), 911
Asymptotic threshold shift (ATS), 865, 866
Atmospheric absorption, 136
Atmospheric pressure, 1
Attenuation:
 active noise control, 721–849
 ducts, lined, 311–313
of sound:
by atmosphere, 136
by barriers, 132–135, 137–139
by ground cover and trees, 137
total, 137
Audio frequency region, 859–867, 873
Auralization, 190
Autocorrelation function, 60
Automotive interior noise control system, 735–736
interaction of ground and, 137–138
and uncertainty of attenuation, 141–142
with transformers, 679
Beams:
damping due to reinforcements, 591–592
infinite:
effective length connecting force and
moment impedance, 502
transmission through, 395–397
power transmission to plate from, 410–413
viscoelastic damping of:
three-component beams, 602–606
two-component beams, 599–600
Beam-tracing techniques, 189–190
BEM (boundary element model), 121
Bending waves:
complete power transmission for, 412–413
reflection loss of, 407–410
in beams, 411–412
and change in cross-sectional area, 407
free bending waves at L-junctions, 408
in plates with vibration break, 415–416
through cross junctions and T-junctions, 409–410
through infinite plates, 417–418
Bias error, 59
in coherent output power calculations, 65
in gain factor estimates, 62
in intensity measurement, 105, 106
Blocked pressure, 626, 629
Block’s formula for shallow cavities, 641–642
Boilers, predicting noise from, 662–663
Boundaries, damping due to, 591
Boundary conditions, 150, 151
forced sound pressure response, 159
Boundary element method, 156
Boundary element model (BEM), 121
Breakin noise, HV AC, 703–705
Breakin sound transmission loss, 450–451
Breakout noise, HVAC, 703–705
Breakout sound transmission loss, 448–450
Broadband disturbance control, 756–760
Broadband regulation filter, 790–795, 797
Bucket ladder unloaders, 664
Butterworth filters, 817–818
Cabinets:
acoustical performance measures of, 520
defined, 517
Cauer filters, 817–818
Cavities, flows past, 640–643
Ceilings, for mechanical rooms, 710
Central-processing units (CPUs), 825, 827
CHABA, see National Academy of
Sciences–National Research Council,
Committee on Hearing, Bioacoustics and
Biomechanics
Characteristic resistance, 40

B
Background noise:
in classrooms, 196–197
for speech intelligibility, 192–193
Baffled pistons, sound power output of, 35, 36
Balanced noise criterion (NCB) curves, 894, 895
Bandwidths:
of continuous-spectrum sound, 7–9
conversion of, 10–11
half-power, 165
with tapering, 57
Barriers, 132
cooling towers, 667
effectiveness of, 345
for open-plan offices, 202–203
for outdoor sound, 120, 132–135
close to trees, with gaps and slots, 138–139

C
INDEX

Choked jets, 621
Circular effects (with FFT), 50
Clamshell bucket unloaders, 664
Classrooms, 191–197
controlling sound in, 196–197
predicting acoustical quality of, 193–196
speech intelligibility in, 192–193
Closed-loop system identification, 771, 772, 774–776, 827, 828
Closed offices, sound pressure levels in, 190–191
Close-fitting enclosures:
defined, 522
sealed, 531–537
free standing, 531–534
machine-mounted, 535–537
wrappings vs., 552
Coincidence frequency, 432–434, 436. See also Critical frequency for orthotropic plates, 437
Coal car shakers, 663–664
Coal crushers, 665
Coal-handling equipment:
diesel-powered, 668
predicting noise from, 663–665
Coal mills and pulverizers, 665
Coal transfer towers, 665
Coefficient of variation, 50
Coherence functions (coherency squared), 58–59
Coherent output power relationship, 64–65
Coil spring isolators, 576
Combination mufflers, 335–338
Combustion noise (gas turbine engines), 624–626
Community noise, 907
Comparison method (sound power output), 81, 88–89
Compensation filter (feedback control), 792–800
Compensator-regulator architecture (feedback control), 784–785
Complex admittance, 41
Complex impedance, 38–40, 588
Complex sound spectra, 12
Composite partitions, sound transmission through, 451
Composite structures (statistical energy analysis), 456
Composite transmission factor, 461, 462
Comprehensive models (noise prediction), 198
Compression waves, 6, 390–391
and change in cross-sectional area, 407 in plates with vibration break, 414–415
Compressive force, 347–348
Concentric-tube resonator (CTR), 304–311
Concurrent system identification, 771
Conference rooms, 191, 890, 891, 898
Construction equipment, diesel-powered, 668
Continuous spectra, 2–3, 7–11
Control authority (ANVC), 730
Conversion factors, 939–942
Cooley-Tukey algorithm, 53–54
Cooling towers, predicting noise from, 666–667
Core noise, 624–625, 679
Correlation functions, 60–61
Cosine-squared taper, 55, 57
Coulomb damping, 588
Coupling loss factor, 456
CPUs, see Central-processing units
Criteria for noise limits in buildings, 886–907
survey method, L_A, 888–889
engineering method, NC, 889, 892–894
precision method, RNC, 899–905
Critical bands, 900
Critical frequency, 432–433, 436. See also Coincidence frequency
Critical damping coefficient, 559, 581
Critical damping ratio, 162
Cross-correlation function, 67–69
Cross junctions, reflection loss of bending waves through, 409–410
Cross-sectional area:
of HVAC ducts, 687, 691
power transmission owing to change in, 406–407
Cross-spectral density (CSD) matrix, 804–808, 810–814
Cross-spectral density functions, 57–59
CSD matrix, see Cross-spectral density matrix
CTR, see Concentric-tube resonator
Cylindrical array (microphones), 93, 94, 96
Cylindrical sound sources, 4

D

D/A converters, see Digital-to-analog converters
Damage risk criteria:
for hearing, 858–874
impulse noise, 867–869
infrasound exposure, 869, 870
noise exposure criteria for audio frequency region, 861–867
protection of, 871–874
ultrasound exposure, 869–871
human vibration response, 874–883
exposure guidelines, 877–883
hand-transmitted vibration effects, 877
whole-body vibration effects, 875–877
Damping, 174–176
critical damping ratio, 162
effect of, 561
in HVAC ducts, 701, 703
structural, 561, 579–607
analytical models of, 588
due to boundaries and reinforcements, 591–592
due to energy transport, 592–594
effects of, 579–580
energy dissipation and conversion, 589–590
measurement of, 586–588
measures of, 580–586
models of, 588–589
viscoelastic, 594–607
in two-stage isolation systems, 573, 574
viscous, 561
Damping capacity, 584
Damping ratio, 559, 561, 581
Dashpots, 395
in mass-spring-dashpot system, 557–560
point force impedance for, 394
Data analysis, 43–69
analog, 52
correlation functions, 60–61
deterministic data, 44–45
mean-square values, 3, 47–48
mean values, 47
for periodic excitation source identification, 63–64
for propagation path identification, 66–69
random data, 45–47
for random excitation source identification, 64–66
running averages, 49–50
spectral functions, 52–59
auto (power) spectral density functions, 55–58
coherence functions, 58–59
FFT algorithm, 52–54
line and Fourier spectral functions, 54–55
statistical sampling errors, 50–51, 59
synchronous averaging, 51–52
for system response properties identification, 62–63
types of data signals, 43
weighted averages, 48–49
Data signals, 43
deterministic, 44–45
random, 45–47
Day-night sound (noise) level, 17, 888, 907
dB, see Decibels
Decay, see Sound decay
Decay distance, 603
Decay rates, 582, 587. See also Reverberation
time
Decibels (dB):
fractions of, 24
and reference quantities, 12
sound power expression, 75
sound pressure level expression, 15, 17
Deflection, 599
Deformation of solids, 492
Department of Defense (DOD), 907
Deterministic data signals, 44–45
spectral computations for, 55
statistical sampling errors with, 59
DI, see Directivity index
Diesel-engine-powered equipment, predicting
noise from, 668–669
Diffuse-field theory, 184–187
Diffuse (reverberant) field, 76–77
control of, 200–201
driving freely hung panel, 457–459
measurement in, 82
sound power determination in, 81
sound power in, 81, 85–91
Diffusers:
HVAC, 701–703
in reverberations rooms, 209–210
Digital data:
mean-square value of, 47–48
mean values of, 47
Digital filters (ANVC), 740–751
adaptive design for, 749–751
advantages of, 740–741
description of, 741–747
optimal design for, 747–749
Digital signal processor (DSP) chips, 740–741, 825–827
Digital signal processors, 825–827
Digital-to-analog (D/A) converters, 767, 770, 815–816
for ANVC systems, 819–825
sampling process of, 817
Dilatation resonance, 439
Dipoles:
aerodynamic, 614, 633
sound power output of, 34, 35
Direct-estimation algorithm, MIMO, 778
Direct field, control of, 200
Directional sources, 72, 73, 78–79
Directivity:
defined, 72
determination of, 113–117
Directivity factor, 113–116
Directivity index (DI), 115–117, 123
Directivity pattern, 113, 114
Direct method (sound power output), 81, 89–91
Displacement level, 582
Displacement ventilation systems, 703
Dissipation, 165–166
Dissipative silencers, 311–335
economic considerations, 335
effect of flow on silencer attenuation, 329–331
factors in acoustical performance of, 282–283
flow-generated noise, 331–333
key performance parameters, 313–316
lined ducts, 281–313
parallel-baffle silencers, 316–325
pod silencers, 328–329
Dissipative silencers (continued)
prediction of silencer pressure drop, 333–335
round silencers, 325–328
Distributed sound-masking systems, 206
Doppler factor, 615
Dose-response curve (DRC), 868
Double-layer partitions, sound transmission through, 443–449
Double-tuned expansion chamber (DTEC), 297–300
Drag, 633
DRC (dose-response curve), 868
Driving point force impedance, 496–500
Dry cooling systems, see Air-cooled condensers
Dry friction damping, 588
DSP chips, see Digital signal processor chips
DTEC, see Double-tuned expansion chamber
Ducts:
flow noise in, 635–638
HVAC, noise transmission attenuation for, 685–699
by cross-sectional area changes, 687, 691
by divisions, 687
by elbows, 691–693
end-reflection loss, 697–698
by plenums, 696–697
prefabricated sound attenuators, 693–696
room effect, 698–699
in straight ducts, 686–691
lined, 280–313
for rooftop air conditioning units, 715–716
sound power determination in, 112–113
transmission loss of, 448–451
Dynamic absorbers, 593
Dynamic capability (of instruments), 105–107
Dynamic excitation:
by point force, 393–394
simultaneous airborne excitation and, 462–465

E
Early decay time (EDT), 183
ECMA International, 112
EDT (early decay time), 183
Effective value, 2, 31. See also Root-mean-square sound pressure
Eigenfrequency, 400
Elastic surface layer, improvement of impact noise isolation with, 479–483
Elastomeric isolators, 576–577
Elbows, HVAC ducts, 691–693
Elementary radiators, sound power output of, 35–36
Emission, 71
HVAC outdoor noise, 717–718
immission vs., 73
machinery noise measurement standards, 916–918
noise power emission level, 75n.
strength descriptors for, 71
Empirical models of sound in rooms, 190
Enclosures, see Acoustical enclosures
End-reflection loss, HVAC, 697–698
Energy, dissipated, see Damping
Energy-average spectral deviation factor, 897
Energy speed, 391, 393
English system of units, 835
Entrance loss (dissipative mufflers), 313–314
Environmental corrections, 80, 98–101
Environmental Protection Agency (EPA), 863
Environmental sound (noise):
measurement application standards, 921–922
measurement method standards, 920–921
outdoor propagation of, 922. See also Outdoor sound propagation
Environmental vibrations standards, 922–924
EPA (Environmental Protection Agency), 863
Equipment (machine) mounted enclosures, 522, 535–537
Equivalent continuous A-weighted noise level, 17
Equivalent sound absorption area, 99
Equivalent sound power level, estimating, 659–660
Equivalent viscous damping, 589n.
Excitation:
of freely hung panel, 457–459
by incident waves vs. other means, 427
by point force, 393–394
of solid structures:
extension of reciprocity to, 473–476
with sound field vs. point force, 462–465
sources of:
and gain factors, 62–63
periodic, 63–64
random, 64–66
Exit loss (dissipative mufflers), 314
Expansion chamber mufflers, 293–300
double-tuned, 297–299
extended-outlet, 294–297
general design guidelines for, 299–300
simple, 293–294
Extended-outlet muffler, 294–297
Eyring approach (diffuse-field theory), 185

F
FAA (Federal Aviation Administration), 907
Fans:
air-cooled condensers, 667
cooling towers, 667
HVAC, 705–707
industrial, 669–672
industrial gas turbines, 674
for mechanical equipment, 718
transformers, 677–679
Far field, 5, 6, 76–77
 cooling towers, 678–679
Fast-field program (FFP), 121
Fast Fourier transform (FFT) algorithms, 50, 52–55
Federal Aviation Administration (FAA), 907
Federal Highway Administration (FHWA), 132
Feedback control systems, 779–800
 alternate suboptimum control filter estimation, 784–800
 architecture for, 731–732, 779–781
 optimal control filter estimation, 781–784
 residual sensor channels for, 809
 system identification in, 771–777
Feedback neutralization, 775
Feedforward control systems, 751–779
 adaptive control, 760–765
 architecture for, 731–732
 basic architecture, 751–754
 control of aliasing effects, 765–769
 extension to MIMO systems, 777–779
 MIMO active locomotive exhaust with passive component, 829–840
 optimal control filter estimation, 754–760
 reference sensor channels for, 809
 residual sensor channels for, 809
 system identification, 769–777
Feed pumps, predicting noise from, 672–673
FFP (fast-field program), 121
FFT algorithms, see Fast Fourier transform algorithms
FFT analyzer, 104
FHWA (Federal Highway Administration), 132
Field-incidence mass law, 435
Field-incidence sound transmission, 435–437
Field-incidence transmission loss, 546
Filtered-U algorithm, 775
Filtered-x LMS algorithm, 761–763, 771, 775, 778, 779
Finite-element method, 156–159
Finite impulse response (FIR) filters, 743, 744, 746–749
Finite panels, sound transmission through, 439–443
FIR filters, see Finite impulse response filters
5-dB rule, 859
Fixed diffusers, 209
Fixed-point DSPs, 825, 827
Flow(s):
 past cavities, 640–643
 in pipes, 630–631
 separated, 627
 and silencer attenuation, 329–331
Flow-generated noise:
 gas flow noise, 611–656
 aeroacoustical sources, 611–616
 aerodynamic noise of throttling valves, 643–656
 airfoils and struts sound generation, 638–640
 in flows past cavities, 640–643
 from fluid flow in pipes, 630–631
 gas jet noise, 616–624
 gas turbine engine combustion noise, 624–626
 grid or grille noise, 635–638
 spoiler noise, 631–635
 turbulent boundary layer noise, 626–630
HVAC:
 in duct systems, 699–700
 flow-generated sound power, 694
 of silencers, 331–333
Flow resistance, flow resistivity, 235–237
Fluctuating drag (flow spoilers), 633
Fluctuating lift forces (flow spoilers), 633
Fluids, propagation speed of sound in, 351–352
Foot-pound-second system of units, 936
Foot-slug-second system of units, 936
Forced sound pressure response, 159–161
Formstiff small enclosures, 527–530
4-dB rule, 859
Fourier spectral functions, 54–55
Fraction of critical damping, 581. See also Damping ratio
Free field, 4, 32, 76
 measurement in, 82
 outdoor sound propagation in, 126–128
 sound power determination in, 91–98
Free-field approximation, for sound intensity, 79–81
Free-field radiation, from jet in ideal acoustical medium, 616
Free standing enclosures, 522, 531–534
Frequency response function, 62, 161
Frequency spectral density, 638–639
Fresnel number, 132
Fresnel zones, 134
Friction force, 347
Furnishings, sound in rooms and, 184
Floating floors:
 checking performance of, 486
 impact noise isolation with, 482
 locally reacting, 482–382
 for mechanical rooms, 710
 resonantly reacting, 483
Floating-point DSPs, 825, 827
Flow(s):
 past cavities, 640–643
 in pipes, 630–631
 separated, 627
 and silencer attenuation, 329–331
Flow-generated noise:
 gas flow noise, 611–656
 aeroacoustical sources, 611–616
 aerodynamic noise of throttling valves, 643–656
 airfoils and struts sound generation, 638–640
 in flows past cavities, 640–643
 from fluid flow in pipes, 630–631
 gas jet noise, 616–624
 gas turbine engine combustion noise, 624–626
 grid or grille noise, 635–638
 spoiler noise, 631–635
 turbulent boundary layer noise, 626–630
HVAC:
 in duct systems, 699–700
 flow-generated sound power, 694
 of silencers, 331–333
Flow resistance, flow resistivity, 235–237
Fluctuating drag (flow spoilers), 633
Fluctuating lift forces (flow spoilers), 633
Fluids, propagation speed of sound in, 351–352
Foot-pound-second system of units, 936
Foot-slug-second system of units, 936
Forced sound pressure response, 159–161
Formstiff small enclosures, 527–530
4-dB rule, 859
Fourier spectral functions, 54–55
Fraction of critical damping, 581. See also Damping ratio
Free field, 4, 32, 76
 measurement in, 82
 outdoor sound propagation in, 126–128
 sound power determination in, 91–98
Free-field approximation, for sound intensity, 79–81
Free-field radiation, from jet in ideal acoustical medium, 616
Free standing enclosures, 522, 531–534
Frequency response function, 62, 161
Frequency spectral density, 638–639
Fresnel number, 132
Fresnel zones, 134
Friction force, 347
Furnishings, sound in rooms and, 184
Gain factor estimates, 62–63
Gas flow noise, 611–656
aeroacoustical sources, 611–616
aerodynamic noise of throttling valves, 643–656
acoustical efficiency, 647–649
aerodynamic noise, 643–647
due to high velocities in valve outlet, 652
methods of valve noise reduction, 652–656
pipe transmission loss coefficient, 649–651
airfoils and struts sound generation, 638–640
in flows past cavities, 640–643
from fluid flow in pipes, 630–631
gas jet noise, 616–624
gas turbine engine combustion noise, 624–626
grid or grille noise, 635–638
spoil noise, 631–635
turbulent boundary layer noise, 626–630
Gas jet noise, 616–624
flight effects, 624
from imperfectly expanded jets, 621–623
jet mixing noise, 616–621
Gas turbines:
engine combustion noise, 624–626
industrial, predicting noise from, 673–675
Gauges of metal plates, 513–514
Generalized-terrain PE, 121
Gradient, 25, 26, 103
Gradient descent algorithms, 749–750
Graphical user interface (GUI), 829
Grid noise, 635–638
Grilles:
HVAC, 701–703
noise from, 635–638
Ground cover, outdoor sound propagation and, 137
Group speed (energy speed), 391, 393
GUI (graphical user interface), 829

H
Half-power bandwidth, 165
Half-power points, 583n.
Hand-arm vibration syndrome (HAVS), 857, 877
Hand-transmitted vibration criteria, 881–882
Hand-transmitted vibration effects, 877
Hanning window, 55, 57
HAVS, see Hand-arm vibration syndrome
Head-related transfer functions (HRTFs), 190
Hearing, 858–874
damage risk criteria, 858–861
impulse noise, 867–869
infrasound exposure, 869, 870
noise exposure criteria for audio frequency region, 861–867
protection of, 871–874
psychoacoustics, 900
and sound pressure, 1
standards for testing equipment/procedures, 918–919
ultrasound exposure, 869–871
Hearing conservation program standards, 919
Hearing impairment (hearing loss), 18
Hearing threshold, 18, 19, 894
Hearing threshold levels, 18
Heating, ventilating, and airconditioning
(HVAC) systems, 685–718
airflow velocity, 701–703
A-weighted sound-level criteria for, 890–891
diffuser selection, 703
duct-borne noise transmission attenuation, 685–699
by cross-sectional area changes, 687, 691
by divisions, 687
by elbows, 691–693
end-reflection loss, 697–698
by plenums, 696–697
prefabricated sound attenuators, 693–696
room effect, 698–699
in straight ducts, 680–691
duct sizes, 700
for especially quiet spaces, 700–703
fans, 705–707
flow noise in ducted systems, 699–700
grille selection, 703
mechanical plant room sound isolation and noise control, 709–710
NCB criteria curves for, 901
NC criteria curves for, 901
noise breakout/break-in, 703–705
outdoor noise emissions, 717–718
RC criteria curves for, 898
RNC criteria curves for, 890–902
rooftop air conditioning units, 715–717
terminal boxes/valves, 707–709
vibration isolation considerations, 711–715
Heat recovery steam generators (HRSGs), 674
Helmholtz equation, 126
Helmholtz resonators, 149, 384, 640, 642–643
Hemi-anechoic spaces/rooms, 82, 92–97, 211
Hemispherical array (microphones), 92–94, 100–101
Hemispherical spaces, directivity index in, 116
Horizontal translational motions, stiffness of isolators and, 564–565
HRSGs (heat recovery steam generators), 674
HRTFs (head-related transfer functions), 190
Human-occupancy areas, noise criteria for, 887–908
acoustically induced vibrations and rattles, 905, 907
evaluation methods for, 888–906
INDEX

A-weighted sound level, 888–891
 current-day sound-level meters, 888
NCB curves, 895
NC curves, 889, 892–894
RC curves, 895–899
RNC curves, 899–906
 noise annoyance in communities, 907
 sound level definitions, 887–888
 typical urban noise, 907–908
Human systems, effect of noise/vibration on,
 857–858. See also Hearing
 Human vibration response, 874–883
 exposure guidelines, 877–883
 hand-transmitted vibration effects, 877
 whole-body vibration effects, 875–877
 Huygens’ model for wave fields, 133–134
HV AC systems, see Heating, ventilating, and
 airconditioning systems

IEC, see International Electrotechnical
 Commission
IIR filters, see Infinite impulse response
 filters
IL, see Insertion loss
Image sources, method of, 188–189
Immission, 71
 emission vs., 73
 preferred descriptor of, 71
Impact dampers, 590
Impact noise, 477–487
 coal-handling equipment:
 car shakers, 664
 rotary car dumpers, 664
 with elastic surface layer, 479–483
 noise isolation vs. sound transmission loss,
 483–486
 standard tapping machine, 477–479
Impedance, 38–41
 complex, 39, 588
 equivalent lumped, 397–398, 496
 of infinite plates and beams, 393–397
 mechanical, 40, 394–395
 moment, 501
 plane-wave, 39, 352–354
 point force, 394–396, 496–500
 separation, 430–434
Impulse noise. See also Impact noise
 exposure to, 860
 and hearing, 867–869
 protection against, 874
Impulse response (digital systems), 742–746
 Inch-pound-second system of units, 936
 Incident sound waves:
 excitation of structures by, 427
 sound absorption:
 normal incidence on porous layer in
 front of rigid wall, 248–251
 oblique incidence, 251–254
 sound transmission through infinite plate:
 normal-incidence waves, 427–430
 oblique-incidence waves, 430–433
 random-incidence (diffuse) sound,
 433–439
 Industrial fans, predicting noise from,
 669–672
 Industrial gas turbines, predicting noise from,
 673–675
 Industrial workshops, 197–201
 noise control for, 200–201
 noise prediction for, 198–200
 Inertia bases, 561–562, 712
 Inertia force, 347
 Infinite impulse response (IIR) filters, 744,
 746, 750
 Infinite rigid pistons, 417
 Infrasound exposure, 859, 860
 and hearing, 869, 870
 protection against, 872–873
 Inhomogeneous atmosphere, refraction of
 sound in, 129–132
 Inner model transform, 781. See also Youla
 transform
 Insertion loss (IL), 170, 284–286
 as acoustical performance measure,
 522–523
 air compressors, 662
 close-fitting enclosures:
 free standing, 532–534
 machine-mounted, 535–537
 HVAC ducts, 690–693
 large enclosures:
 and flanking, 549, 550
 at high frequencies, 541–544
 inside-outside vs. outside-inside
 transmission, 549–550
 key parameters influencing, 544–545
 and leaks, 547, 548
 and machine position, 549
 and machine vibration pattern, 549
 and sound-absorbing treatment, 547, 548
 and wall panel thickness, 545–547
 without internal sound-absorbing
 treatment, 538–540
 small enclosures:
 leaky, 530–531
 sealed, 525–530
 Instrumentation standards:
 intensity instruments, 914
 noise-measuring instruments, 912–913
 Insulation, thermal-acoustical blanket, 672
 Intensity, see Sound intensity
 Intermediate office speech level (IOSL), 205
 Intermediate-size enclosures, 537–538
 Internal friction, 589
 International Electrotechnical Commission
 (IEC), 104, 911
 International Organization for Standardization
 (ISO), 82, 878, 911
 Inverse square law, 4–5
INDEX

IOSL (intermediate office speech level), 205
ISO, see International Organization for
Standardization
Isolation effectiveness, 568–569
and isolator mass effects, 570–571
with two-stage isolation, 573–575
Isolation efficiency, 560
Isolation range, 559
Jet mixing noise, 616
Joint input-output method, 776–777
Kronecker delta function, 742
Kuttruff model, 198–199
Large enclosures:
with interior sound-absorbing treatment, 540–551
analytical model for insertion loss at
high frequencies, 541–544
effect of sound-absorbing treatment, 547, 548
flanking transmission through floor, 549, 550
inside-outside vs. outside-inside
transmission, 549–550
key parameters influencing insertion loss, 544–545
leaks, 547, 548
machine position, 549
machine vibration pattern, 549
wall panel parameters, 545–547
without interior sound-absorbing treatment, 538–540
Large partitions, sound transmission of, 425–427
Lateral quadrupole, 349–350
Leakage, in filtered-x algorithm, 762
Leakage errors, 54
Leaky enclosures, 522
large, 547, 548
small, 530–531
Lecture rooms, 191. See also Classrooms
Levels, 12–18
average A-weighted sound level, 17
average sound level, 16
A-weighted sound (noise) exposure level, 538–540
A-weighted sound pressure level, 15–16
day-night, 17
equivalent continuous A-weighted, 17
hearing impairment (hearing loss), 18
hearing threshold levels:
associated with age, 18
associated with age and noise, 18
for setting “zero” at each frequency on a
pure-tone audiometer, 18
noise-induced permanent threshold shift, 18
overall levels, determining, 22–24
sound intensity level, 14–15
sound power level, 13–14
sound pressure level, 15, 17
Level at mid-frequencies (LMF), 896, 897
Linear average, 48
Linear isolators, massless, 569–570
Lined ducts, 280–313
Line sources, 122
Line spectral function, 54–55
Line spectrum, 2
L-junctions, reflection loss of free bending
waves at, 408
LMF, see Level at mid-frequencies
LMS algorithm, 750–751
adaptive control based on, 760
filtered-x, 761–762, 771, 775
Logarithmic decrement, 581, 587
Longitudinal quadrupole, 350
Longitudinal waves, 6
in beams, reflection loss for, 410–411
resonance of, 640–641
Long-term A-weighted sound pressure level, 139
Loss factor:
damping, 584
for panels/uniform plates, 591
in piping, 630–632
structural damping, 561
of three-component beam, 604–606
of viscoelastic material, 595–596
Loudness, perceived, 900
Loudspeakers, 729
Low-noise compressors, 660
Machine-mounted enclosures, see Equipment
mounted enclosures
Machinery noise:
active machinery isolation, 840–845
emission measurement standards, 916–918
inertia bases, 561–562
prediction of, see Prediction of machinery
noise
Machinery vibration, active control of, 739–740
Mach number, 304
Masking of sound, 205, 206
Mass, 394, 579
Mass-controlled boundaries, 169
Mass law, 443
Massless linear isolators, 569–570
Massless springs, 395
in mass-spring-dashpot system, 557–560
point force impedance for, 394
Mass-spring-dashpot system, 557–560, 580
energy dissipation in, 585
steady-state response of, 584
time variation of, 581
Material damping, 589
Mean-square error (FIR filters), 748–749
Mean-square (ms) value (variance), 47–48
in data analysis, 47–48
normalized random error of, 50, 51
Mean-square sound pressure:
and bandwidth conversion, 10–11
for complex spectra, 12
for contiguous frequency bands, 8, 9
of continuous-spectrum sound, 7, 11
Measurement environments, 82
Measurement surfaces, 92
Mechanical hysteresis, 589
Mechanical impedance, 40, 394–395
Mechanical induced-draft cooling towers, 666–667
Mechanical plant rooms, sound isolation/noise control in, 709–710
Mercury RACE++, 825, 827
Metallic isolators, 576
Meteo-BEM, 121
Meteorology, outdoor sound propagation and, 139–140
Meter-kilogram-second (mks) system of units, 936
Method of image sources, 188–189
Micrometeorology, 130
Microphones (for measurements), 102
for hemi-anechoic spaces, 92–97
for reverberation rooms, 87–88
Midfrequency average, 896
MIMO systems, see Multiple-input, multiple-output systems
ms, see Mean-square value
Mufflers. See also Silencers
combination, 335–338
expansion chamber, 293–300
feed pumps, 674
for industrial fans, 670
perforated-element, 300–311
steam vents, 677
transformers, 679
Multilayer partitions, sound transmission through, 443–448
Multiple-input, multiple-output (MIMO) systems, 740
feedforward, 754
feedforward active locomotive exhaust with passive component, 829–840
actuator number/location, 832–834
control actuator design, 834–836
control architecture, 835–836
hardware selection, 837–838
performance goals, 831–832
problem description, 829–830
sensor number/location, 832, 834, 835
system performance, 838–840
LMS algorithms for, 751
optimal design of, 777–779
Youla feedback architecture in, 783
Music, exposure criteria for, 867
Music waves, superposition principle and, 36

N
National Academy of Sciences–National Research Council, Committee on Hearing, Bioacoustics and Biomechanics (CHABA), 861–862, 867
Natural-draft cooling towers, 666
Natural frequencies, 150, 152–155
of finite structures, 400
and horizontal stiffness of isolators, 565
of mechanical equipment isolators, 711
for pure vertical vibration, 563
of rigid and nonrigid masses, 563
for rocking, 564
in two-stage isolation systems, 572–573
NCB curves, see Balanced noise criterion curves
NC curves, see Noise criterion curves
Near field, 76
NEMA values (transformer noise level), 678, 679
Net oscillatory force, 349
Neutralizers, 593
Newton’s second law of motion, 25, 26
Nichols plot, 787–788, 794
NIPTS, see Noise-induced permanent threshold shift
NITTS, see Noise-induced temporary threshold shift
Noise annoyance (in communities), 907
Noise-cancellation headsets, 736–738
Noise control, 345
active, see Active noise and vibration control
in buildings, acoustical standards for, 926–931
in classrooms, 196–197
design standards for, 930–931
for industrial workshops, 200–201
in mechanical plant rooms, 709–710
in solid structures, see Solid structures, interaction of sound waves with as system problem, 81
transformers, 679
in very small enclosures, 145–146
Noise criterion (NC) curves, 889, 892–894, 901
Noise exposure:
A-weighted, 858
criteria for audio frequency region, 861–867, 886–906
duration of, 865–866
Noise exposure level, A-weighted, 18
Noise-induced hearing loss, 857, 859
Noise-induced permanent threshold shift (NIPTS), 861–862, 864, 865
Noise-induced temporary threshold shift (NITTS), 866, 867
Noise level, perceived, 4
Noise mapping, computer software for, 139
Noise power emission level (NPEL), 75n.
Noise reduction (NR), 284, 286, 345, 382–387
active, 345
actuators, 807
air compressors, 662
cooling towers, 666, 667
feed pumps, 673
HVAC systems:
criteria for noise control in, 886–906
by duct cross-sectional area changes, 687, 691
by duct divisions, 687
by elbows, 691–693
for especially quiet spaces, 700–703
by plenums, 696–697
for straight ducts, 686–691
industrial fans, 669–670
by minimizing added mass, 383–384
passive, 345–346
at specific frequencies, 384–387
steam turbines, 676
throttling valves, 652–656
wind turbines, 680
Noise reduction coefficient (NRC), 207
Noise sources, see Sound (noise) sources
Non-dispersive waves, 391–392
Nonperiodic steady-state signals, 44
Nonrecursive filters, 743
Nonrigid masses:
natural frequencies of, 563
transmissibility of, 565–567
Nonstationary random data, 46–47, 49–50
Non-volume-displacing sound sources, radiation by, 361–377
force acting on fluid, 371–375
response of bounded fluid to point force excitation, 375
response of unbounded fluid to excitation by oscillating small rigid body, 363
in response to excitation of fluid by oscillating small rigid sphere, 363–371
Normal-incidence sound transmission, 427–430
Normalized LMS algorithm, 751
Normalized random error, 50, 65
Normal processes, 159
Normal-mode expansion, 159
Normal mode of vibration, see Resonance
Normal specific acoustical impedance, 41
Nosoacusis, 860
NPEL (noise power emission level), 75n.
NR, see Noise reduction
NRC (noise reduction coefficient), 207
Nyquist frequency, 53, 54, 57
Nyquist plots, 583, 585, 786–788, 794, 798, 799
Nyquist’s sampling theorem, 815
Nyquist stability criterion, 785

O
OAPWL, see Overall sound power level
OASPL, see Overall sound pressure level
Oblique-incidence sound transmission, 430–433
Occupational Safety and Health Administration (OSHA), 862
Octave-band sound power level:
air compressors, 661
estimates of, 659
feed pumps, 673
steam turbines, 676
with surging or large fluctuations, 903–905
Octave-band sound pressure level, 15, 678
Octave-band source spectra, 122–123
Offices:
closed, sound pressure levels in, 190–191
criteria for noise control in, 890, 891
open-plan, 201–208
One-dimensional wave equation:
backward-traveling plane wave, 32
general solution to, 27–28
intensity, 31–32
outwardly traveling plane wave, 28–31
particle velocity, 31
root-mean-square sound pressure, 31
solutions to, 27–34
spherical wave, 32–34
Open area ratio, 306, 307
Open-loop system identification, 770–772,
774, 775, 827, 828
Open-plan offices, 201–208
barriers for, 202–203
design parameters for, 206–208
rating acoustical privacy of, 203–204
speech and noise levels in, 205–206
workstation acoustical design, 204–205
Optimal control theory, 781
Oscillating rigid bodies, radiation efficiencies
of, 418–419
Oscillating small rigid bodies:
fluid excitation, 363–371
harmonic excitation, 363–365
predicting body length, 366–370
predicting radiated sound power, 366, 371
random excitation, 371
sound radiation of nonspherical bodies, 365
unbounded fluid, 363
point force excitation, 375–377
radiation by, 348–349
Oscillating spheres, sound power output of,
34, 35
Oscillating three-dimensional bodies,
radiation efficiencies of, 418–419
OSHA noise exposure criteria, 862
OSHA (Occupational Safety and Health
Administration), 862
Outdoor noise emissions, from HVAC
systems, 717–718
Outdoor sound propagation, 119–143
accounting for meteorology, 139–140
airborne, 121
atmospheric absorption, 136. See also Air
absorption
barriers, 132–135
computer software for noise mapping, 139
effects of ground cover and trees, 137
in homogeneous free space over ground,
120–121, 126–128
inhomogeneity of atmosphere, 129–132
interaction of barriers and ground, 137–138
moving sources, 124–126
point sources at rest, 120–124
reflectors and reverberation, 135–136
refraction of sound, 129–132
relevance of criteria for, 119–120
standard regulations for interactions, 137
standards for, 922
uncertainties of, 140–143
Outwardly traveling plane wave, 28–31
Overall A-weighted sound pressure level, 17,
142–143
Overall level (OA), 22–24
Overall sound power level (OAPWL):
air compressors, 661
air-cooled condensers, 667
boilers, 662
central-station power sources, 623
coal-handling equipment:
car shakers, 663
crushers, 665
mills and pulverizers, 665
rotary car dumpers, 664
transfer towers, 665
unloaders, 664
diesel-engine-powered equipment, 668–669
feed pumps, 672
for gas turbine engines, 625
industrial fans, 670–672
industrial gas turbines, 675
steam turbines, 676
steam vents, 676–677
Overall sound power output (cooling towers),
666
Overall sound pressure level (OASPL),
618–621, 624
Overlapped processing, 57

P
Parabolic equation (PE), 121
Parallel-baffle silencers, 311, 312, 316–325
baffle thickness, 324–325
cross-sectional area, 322
effect of temperature on, 322–324
predicting acoustical performance of,
316–322
quantitative considerations with, 317
Parallelepiped array (microphones), 93, 95,
100
Particle velocity, 5–6
measurement of, 102–103
for outwardly traveling plane wave, 31
for spherical waves, 33–34
Partitions, sound transmission by:
composites, 451
double-layer partitions, 443–449
large partitions, 425–427
multilayer partitions, 443–447
small partitions, 421–425
Passive silencers, 279–338
combination mufflers, 335–338
dissipative, 311–335
economic considerations, 335
Passive silencers (continued)
effect of flow on silencer attenuation, 329–331
flow-generated noise, 331–333
key performance parameters, 313–316
lined ducts, 281–313
parallel-baffle silencers, 316–325
pod silencers, 328–329
prediction of silencer pressure drop, 333–335
round silencers, 325–328
expansion chamber mufflers, 293–300
double-tuned expansion chamber, 297–299
extended outlet muffler, 294–297
general design guidelines for, 299–300
simple expansion chamber muffler, 293–294
perforated-element mufflers, 300–311
acoustical performance, 303–310
back pressure, 310–311
range of variables for, 300–303
performance metrics for, 281–286
reactive, 286–293
representation by basic silencer elements, 287–288
transfer matrices for, 288–293
Pendulum isolators, 577–578
Perceived noise level, 49
Perforated-element mufflers, 300–311
acoustical performance, 303–310
back pressure, 310–311
range of variables for, 300–303
Perforated plates, open area of, 515
Performance:
ANVC systems:
and controller architecture, 814–817
goals for, 801–804
and doors/windows/ventilation openings, 660
insertion loss as measure of, 522–523
measures of, 518–519
qualitative description of, 523–525
Periodic excitation sources, identification of, 63–64
Periodic signals, 44
mean-square value for, 48
spectral computations for, 54
statistical sampling errors with, 59
Permanent threshold shifts (PTSs), 862
Permissible exposure level (PEL), 862
Phase speed, 391–393
Pipes:
fluid flow in, 630–631
to isolated mechanical equipment, 714
with open side branch, sound radiation in, 355
transmission loss of, 448–451
Pipe transmission loss coefficient (throttling valves), 649–651
Pipe wrappings, 554–555
Piston-in-cylinder isolators, 577
Plane boundaries, sound radiation and, 377–382
oscillating moment in infinite liquid, 381–382
pressure-release boundaries, 379–381
rigid boundaries, 378–379
Plane waves, 6
backward traveling, 32
outwardly traveling, 28–31
reflection and transmission at interfaces of, 403–406
sound pressure and particle velocity relationship, 38
Plane-wave impedance, 352–354
Plane-wave transfer matrix method, 280–281
Plant transfer functions, 770–771
Plateau method (sound transmission), 442–443
Plates:
finite, point-excited, 420–421
infinite, 395–397, 417–418
effective length connecting force and moment impedance, 502
normal-incidence plane waves, 427–430
oblique-incidence plane waves, 430–433
point-excited, 420–421
random-incidence sound, 433–439
inhomogeneous, 438–439
orthotropic, 437–438
perforated, open area of, 515
power transmission from beam to, 410–413
thin isotropic, field-incidence transmission for, 435–437
transmission through, 395–397
normal-incidence plane waves, 427–430
oblique-incidence plane waves, 430–433
random-incidence sound, 433–439
with vibration break, power transmission between, 413–416
with viscoelastic coatings, 601–602
with viscoelastic interlayers, 606–607
Plenums:
HVAC ducts, 696–697
for rooftop air conditioning units, 715
Plug muffler, 304–311
Pneumatic isolators, 577
Pod silencers, 328–329
Point force:
active control of disturbance, 725–727
dynamic excitation by, 393–394
excitation by sound field vs., 462–465
Point force impedance, 394–396, 496–500
Point input admittance (mobility), 396
Point moment, dynamic excitation by, 393–394
Point moment impedance, 394–395, 501
Point sound sources, 122–124, 361
INDEX

Poisson’s ratio, 391, 493
Pole-zero filters, 744
Position-keeping system, 739, 796
Positive definite (quadratic function), 748
Power, see Sound power
Power balance:
and response of finite structures, 399–403
in two-structure system, 456–457
Power balance equation, 406
Power law damping, 588
PowerPC (PPC) chips, 825–827
Power spectral density (PSD) functions, 55–58, 172–174
Power spectral density spectrum, 9
Power transmission between structural elements, 406–416
from beam to plate, 410–413
and change in cross-sectional area, 406–407
plates separated by thin resilient layer, 413–416
reflection loss:
of bending waves through cross junctions/T-junctions, 409–410
of free bending waves at L-junctions, 408
PPC chips, see PowerPC chips
Prediction of machinery noise, 659–681
air compressors, 660–662
air-cooled condensers, 667–668
boilers, 662–663
cool-handling equipment, 663–665
cooling towers, 666–667
diesel-engine-powered equipment, 668–669
feed pumps, 672–673
industrial fans, 669–672
industrial gas turbines, 673–675
steam turbines, 675–676
steam vents, 676–677
transformers, 677–679
wind turbines, 679–681
Prefabricated sound attenuators, HVAC, 693–696
Presbyacusis, 860
Pressure, see Sound pressure
Pressure-residual intensity index, 106
Privacy, in open-plan offices, 201–204
Processor-to-processor communications, 825
Propagation of sound:
in fluids, 351–352
identifying propagation paths, 66–69
outdoor, see Outdoor sound propagation in rooms, 182
Propagation speed:
in solids, 492
velocity vs., 391
PSD functions, see Power spectral density functions
PTSs (permanent threshold shifts), 862
Pulsating small rigid bodies, radiation by, 348
Pulsating sphere:
maximum achievable volume velocity of, 359–361
sound radiation of, 355
Pumps:
feed, predicting noise from, 672–673
at transformers, 677
Pure tones, 2
in continuous spectrum, 7, 8
and hearing thresholds, 18
setting pure-tone audiometers, 18
and spectral density, 9

Q
Quadrupoles, aerodynamic, 613–614
Quality assessment index (QAI), 897–899
Quantization noise, 822–823
Quarter-spherical spaces, directivity index in, 116–117

R
Radiation efficiency, 418–420, 509–511
Radiation fields of sources, 75–77
Radiation impedance of sphere, 364
Radiation of sound:
by thin plates, 417, 420
effect of plane boundaries on, 377–382
oscillating moment in infinite liquid, 381–382
pressure-release boundaries, 379–381
rigid boundaries, 378–379
global cancellation, 722
by non-volume-displacing sound sources, 361–377
effect of surrounding point force by rigid pipe, 375–377
force acting on fluid, 371–375
response of bounded fluid to point force excitation, 375
response of unbounded fluid to excitation by oscillating small rigid body, 363
in response to excitation of fluid by oscillating small rigid sphere, 363–371
by small rigid bodies, 346–355
acoustical parameters, 351–354
lateral quadrupole, 349–350
longitudinal quadrupole, 350
oscillating small rigid bodies, 348–349
by pipe with open side branch representing pulsating sphere, 355
by piston in rigid tube with open side branch, 354–355
pulsating small rigid bodies, 348
radiated sound power, 351
in solid structures, 416–421
tonal components in, 635
by vibrating structures, 593–594
by volume-displacing sound sources, 356–361
INDEX

Radiators, elementary, 35–36
Random-analysis theory, 172–174
Random data signals, 45–47
 cross-spectral density function, 57–58
 mean values for, 47
 statistical sampling errors with, 59
 tapering windows with, 57
Random error, 62
Random excitation sources, identification of, 64–66
Random-incidence (diffuse) sound transmission, 433–439
Random-incidence mass law, 435
Random sound pressure response, 170, 172–175
Rattles, acoustically induced, 905, 907
Rayleigh, Lord, 119, 129
Raynaud’s phenomenon, 877
Ray theory, 121
Ray-tracing techniques, 189–190, 198
RC curves, 895–899
RC filter, 48
Reactive silencers, 286–293
 factors in acoustical performance of, 282–283
 representation by basic silencer elements, 287–288
 transfer matrices for, 288–293
Receiver mobility, 569
Reciprocity, 162, 465–477
 extension to sound excitation of structures, 473–476
 for higher order excitation sources/responses, 512
 in moving media, 476–477
 prediction of noise from multiple correlated forces, 470–471
 source strength identification by, 471–473 theorem, 162
Reconstruction filters, 817–819
Recurrent filters, 744
Reference quantities, 12, 19–22
“Reference Quantities for Acoustical Levels” (ANSI S1.9–1989, Reaffirmed2001), 19, 20
Reference sensors (ANVC), 809, 812–813
Reflection loss:
 for bending waves:
 in beams, 411–412
 and change in cross-sectional area, 407
 at interfaces, 404–405
 free bending waves at L-junctions, 408
 in plates with vibration break, 415–416
 through cross junctions and T-junctions, 409–410
 for compression waves:
 and change in cross-sectional area, 407
 in plates with vibration break, 414–415
 for longitudinal waves in beams, 410–411
Reflection of sound:
 at plane interfaces, 37, 403–406
 by room surfaces, 183
Reflectors, outdoor, 135–136
Refraction of sound, 129–132
Regularization (ANVC sensors), 814
Regulation filter design (feedback control), 785–792
Reinforcements, damping due to, 591–592
Relative bandwidth, 583
Residual sensors (ANVC), 809–812
Resonance, 38, 150, 640–643
Resonance frequencies, 165
 of boilers, 663
 of finite structures, 400, 401, 507–508
 standing-wave, 570
Resonance transmission loss, 460
Reverberant field, see Diffuse (reverberant) field
Reverberation:
 in classrooms, 197
 in industrial workshops, 197–198
 outdoor sound propagation, 135–136
 for speech intelligibility, 193
 standards for, 930–931
 with steam turbines, 676
Reverberation rooms, 82, 209–210
 characteristics of, 85–86
 experimental setup for, 87–88
 qualification requirements for, 86–87
Reverberation time, 175–176, 582
Reynolds stresses, 119, 613
Rigid masses, 395, 563. See also
 Three-dimensional masses
Rigid tube with open side branch, sound generation in, 354–355
Ring frequency, 500
Rms sound pressure, see Root-mean-square sound pressure
RNC curves, 899–906
Road surface sound absorption standards, 924
Rocking motions, vertical motions coupled with, 563–564
Roof top air conditioning units, 715–717
Rooms, sound in, 181–211
 air absorption, 183
 alternative prediction approaches, 187–188
 anechoic and hemi-anechoic chambers, 211
 auralization, 190
 classrooms, 191–197
 criteria for noise control in, 886–907
 diffuse-field theory, 184–187
 domestic rooms and closed offices, 190–191
 empirical models, 190
 and furnishings, 184
 from HVAC ducts, 698–699
 industrial workshops, 197–201
 method of image sources, 188–189
 open-plan offices, 201–208
propagation of sound, 182
ray and beam tracing, 189–190
reverberation rooms, 209–210
sound decay, 182–183
surface absorption and reflection, 183

Room noise evaluation:
engineering method, 889, 892–894
precision method, 899–905
survey method, 888–889

Root-mean-square (rms) sound pressure, 2
for contiguous frequency bands, 8, 9
of continuous-spectrum sound, 7, 11
normalized random error of, 50, 51
for outwardly traveling plane wave, 31

Rotary coal car dumpers, 664
Rotating diffusers, 209–210
Round silencers, 312, 325–328
Running averages, 49–50

S
SA A/D converters, see Successive-approximation A/D converters
Sabine approach (diffuse-field theory), 185–186
Sampling errors, see Statistical sampling errors
 Schroeder frequency, 209
Screech tones, 621, 622
SEA, see Statistical energy analysis
Seals, for mechanical rooms, 710
Sealed enclosures:
 close-fitting, 531–537
defined, 522
 small, 525–531
SECM, see Simple expansion chamber muffler
Seismic restraint of equipment, 713
SEL, see Sound exposure level
Self-noise, 639
Sensors (ANVC), 730–732
 performance of, 813–814
 reference, 809, 812–813
 residual, 809–812
Separation impedance, 430–434
Shakers (ANVC), 730
Shear modulus (viscoelastic material), 391, 595–596
Shear parameter (3-component beam), 603
Sheet Metal and Air Conditioning National Association (SMACNA), 686
Small enclosures, sound in, 145–178. See also Rooms, sound in acoustical modal response, 149–151
 enclosure driven at resonance, 164–166
 flexible-wall effect on sound pressure, 166–171
 forced sound pressure response, 159–161
 natural frequencies and mode shapes, 150, 152–155
 numerical methods for acoustical analysis, 156–159
 random sound pressure response, 170, 172–175
 sealed enclosures, 525–531
 steady-state sound pressure response, 161–164
 transient sound pressure response, 174–178
 very small enclosures, 145–149
Small partitions, sound transmission of, 421–425
Small rigid bodies:
 oscillating, see Oscillating small rigid bodies
 radiation by, 346–355
 acoustical parameters of, 351–354
 lateral quadrupole, 349–350
 longitudinal quadrupole, 350
 pipe with open side branch representing pulsating sphere, 355
 piston in rigid tube with open side branch, 354–355
Small rigid bodies: (continued) radiated sound power, 351
pulsating bodies, 348
Smoothing filters (ANVC) 815
Snell’s law, 405
Sociacusis, 860
Soft parameters, 827, 828
Solids:
key acoustical parameters of, 493–495
wave motion in, 390–393
Solid structures, interaction of sound waves with, 389–515
impact noise, 477–487
impact noise isolation vs. sound transmission loss, 483–486
improvement of impact noise isolation by elastic surface layer, 479–483
standard tapping machine, 477–479
mechanical impedance, 394–395
power balance and response of finite structures, 399–403
power input, 395–399
power transmission between structural elements, 406–416
from beam to plate, 410–413
and change in cross-sectional area, 406–407
plates separated by thin resilient layer, 413–416
reflection loss of bending waves through cross junctions/T-junctions, 409–410
reflection loss of free bending waves at L-junctions, 408
reciprocity, 465–477
in moving media, 476–477
prediction of noise from multiple correlated forces, 470–471
and sound excitation of structures, 473–476
source strength identification by, 471–473
reflection and transmission at plane interfaces, 403–406
and simultaneous airborne/dynamic excitation, 462–465
sound radiation, 416–421
sound transmission:
flanking, 451–453
of large partitions, 425–427
loss in ducts and pipes, 448–451
of normal-incidence waves through infinite plate, 427–430
of oblique-incidence waves through infinite plate, 430–433
of random-incidence (diffuse) sound through infinite plate, 433–439
of small partitions, 421–425
through composite partitions, 451
through double- and multilayer partitions, 443–449
through finite-size panel, 439–443
statistical energy analyses, 453–462
composite structures, 456
diffuse sound field driving freely hung panel, 457–459
equal energy of modes of vibration, 455
modal energy, 454–455
noncorrelation between waves in two systems, 455
power balance in two-structure system, 456–457
realization of equal coupling loss factor, 456
SEA method, 459–462
system of modal groups, 453–454
transmission loss through simple homogeneous structure, 459–462
superposition, 465–467
wave motion in solids, 390–393
Sound absorption, 215–274
by air in rooms, 183
atmospheric, 136
design charts for fibrous sound-absorbing layers, 254–264
monolayer absorbers, 255–259
multilayer absorbers, 261
thin porous surface layers, 261–264
two-layer absorbers, 259–261
for enclosures, 521
equivalent sound absorption area, 99
large flat absorbers, 246–265
normal incidence on porous layer in front of rigid wall, 248–251
oblique sound incidence, 251–254
plane sound waves at normal incidence, 247–248
limp porous layer, 225–229
multiple limp porous layers, 229
by non-sound absorbers, 218–221
in open-plan offices, 206–207
by plate and foil absorbers, 271–274
by porous bulk materials and absorbers, 229–246
acoustical properties of porous materials, 238–239
analytical characterization of porous granular/fibrous materials, 238
empirical prediction of flow resistivity, 237
decorations from regression analyses of measured data, 239–243
flow resistance and flow resistivity, 235–237
plastic foams, 244–245
polyester fiber materials, 241, 243–244
porosity, 231–233
process of, 231
and temperature, 245–246
theoretical prediction of flow resistivity, 237–238
tortuosity, 232, 234
process of, 216
by resonance absorbers, 264–271
absorption cross section of individual resonators, 266–268
acoustical impedance of resonators, 265–266
internal resistance of resonators, 268–271
nonlinearity and grazing flow, 268
resonance frequency, 266
spatial average impedance of resonator arrays, 271
by rigid porous layer, 221–225
by room surfaces, 183
sound absorption coefficients, 216–218
standards for, 928–930
by thin-flow resistive layer in front of rigid wall, 221
waveguide absorbers, 593
for wrappings, 521
Sound absorption average (SAA), 206–208
Sound attenuation, see Noise reduction; Silencers
Sound barriers, see Barriers
Sound decay, 182–183, 186
Sound energy density, 7
Sound exposure, A-weighted, 18
Sound exposure level (SEL), 125–126
Sound generation, 345–387
 effect of nearby plane boundaries on, 377–382
non-volume-displacing sound sources, 361–377
 effect of surrounding point force by rigid pipe, 375–377
 force acting on fluid, 371–375
 response of bounded fluid to point force excitation, 375
 response of unbounded fluid to excitation by oscillating small rigid body, 363
 in response to excitation of fluid by oscillating small rigid sphere, 363–371
reducing sound radiation, 382–387
small rigid bodies, 346–355
 acoustical parameters of, 351–354
 lateral quadrupole, 349–350
 longitudinal quadrupole, 350
 oscillating small rigid bodies, 348–349
 by pipe with open side branch representing pulsating sphere, 355
 by piston in rigid tube with open side branch, 354–355
 pulsating small rigid bodies, 348
 radiated sound power, 351
 volume-displacing sound sources, 356–361
Sound intensity, 3–4
 for cylindrical sound source, 4
 defined, 3
 in determining sound power, 101–112
 free-field approximation for, 79–81
 instrumentation for measuring, 104–105
 for outwardly traveling plane wave, 31–32
 and sound power, 22
 sound power vs., 14–15
 and sound pressure, 4
 for spherical sound source, 4
 for spherical waves, 34
 standards for measurement instruments/techniques, 914
Sound intensity analyzer, 103–104
Sound intensity level, 14–15
 reference quantities for, 19–22
 and sound power level, 22
Sound isolation, in mechanical plant rooms, 709–710
Sound levels, see Levels
Sound level measurement standards, 912–914
Sound (noise) sources, 71–117, 887
 aeroacoustical, 611–616
 in classrooms, 192, 196
cylindrical, 4
dipole-type, 638
directional, 72, 73
directivity of, 113–117
excitation sources:
 and gain factors, 62–63
 periodic, 63–64
 random, 64–66
measurement environments for, 82
nondirectional (monopole), 34, 72
outdoor:
 moving sources, 124–126
 point sources at rest, 122–124
 point (monopole), 34, 361
 radiation by, 35, 361–377
 radiation field of, 75–77
sound intensity:
 free-field approximation for, 14, 35, 79–81
 and sound power, 14, 77–79
 sound power levels, 14, 73–74
determination of, 82–85
 in diffuse field, 81, 85–91
 in ducts, 112–113
 environmental corrections in determining, 98–101
 in free field, 14, 91–98
 and sound intensity, 14, 77–79
 sound intensity in determining, 14, 101–112
spherical, 4, 5, 35
volume-displacing:
 radiation by, 35, 356–361
 in workshops, 199
INDEX

Sound power, 4, 5
of baffled pistons, 36
defined, 4, 14
in diffuse field, 81, 85–91
of dipoles, 34, 35
in ducts, 112–113
in free field, measurement of, 91–98
anechoic spaces, 97–98
measurement surfaces, 92
of monopoles, 34
of oscillating spheres, 34, 35
radiated, 35
and sound intensity, 4, 22, 77–79
Sound power input:
in solid structures, 395–399
to structures, 503–506
Sound power level, 13–14, 73–74
defined, 72
and environmental corrections, 98–101
environmental noise:
measurement application standards, 921–922
measurement method standards, 920–921
expression of, 75
HVAC duct-borne noise, 685–686
with impact noise, 479
ISO standards for determining, 82–85
reference quantities for, 19–22
and sound intensity level, 22
Sound power measurement standards, 914–916
Sound power output:
air-cooled condensers, 667
cooling towers, 666
small boilers, 662
Sound pressure, 1
in determination of sound power, 4, 91–98
flexible-wall effect on, 166–171
forced sound pressure response, 159–161
and particle velocity, 5–6
in plane waves, 32, 38
random sound pressure response, 170, 172–175
and sound intensity, 4
sound power vs., 4, 14–15
space-averaged squared, 7
for spherical waves, 32–33
steady-state sound pressure response, 161–164
transient sound pressure response, 174–178
Sound pressure level, 15, 17
A-weighted, 15–16
calculation of, 18, 72, 73
defined, 18, 71
expression of, 75
long-term A-weighted, 16, 139
overall A-weighted, 142–143
reference pressure for, 19
reference quantities for, 19–22
Sound propagation:
in industrial workshops, 197, 198
between office workstations, 202, 204–205
underwater, 121
Sound radiation, see Radiation of sound
Sound spectra, 7–12
complex, 12
continuous, 7–11
Sound transmission, see Transmission
Sound waves, 1–7
compositional, 6
interference of, 36–37
inverse square law for, 4–5
longitudinal, 6
and noise, 1
and particle velocity, 5–6
period of, 2
plane, 6, 28–31
reflection, 36–38, 404–405
resonant, 38
root-mean-square amplitude of, 2
sound energy density, 7
and sound spectra, 2–3. See also Sound
spectra
speed of, 6
spherical, 32–34
standing, 37–38
transverse, 6
traveling, 37
wave equation, 25–34
wavelength, 7
Source dimensionality, 805
Space-averaged sound energy density, 7
Space-averaged squared sound pressure, 7
Spacers, 660n.
Spatial decay rate, 582
Specific acoustical impedance, 40
Spectral density function, 50
Spectral functions:
data analysis, 52–59
auto (power) spectral density functions, 55–58
coherence functions, 58–59
FFT algorithm, 52–54
line and Fourier spectral functions, 54–55
statistical sampling errors, 59
time domain procedures for, 60
Spectral method (underwater sound), 121
Spectral (spectrum) density, 9
Speech communication metrics standards, 920
Speech intelligibility, in classrooms, 192–193
Speech intelligibility index (SII), 204, 206–208
Speech interference level (SIL), 888, 889, 892, 893
Speech privacy, 203–204
and ambient noise levels, 206
and voice levels, 205
Speech waves, superposition principle and, 36
Speed of sound, 6
group (energy) speed, 391, 393
phase speed, 391–393
propagation speed vs. velocity, 391
in solids, 492
Spherical sound sources, 4, 5, 116
Spherical waves, 32–34
Spinal injury, vibration-related, 857
Spoiler noise, 631–635
Spring isolators, 712–713
Squared correlation coefficient function, 61
Square law damping, 588
Standards, 911–931
for architectural noise control in buildings, 926–931
acoustics, reverberation, and noise control design, 930–931
sound absorption, 928–930
sound transmission, 926–928
for criteria for noise in rooms, 886–906
for environmental correction, 98–101
finding/selecting, 911–912
for HV AC silencers, 694
for impact noise isolation, 486
for impact of noise in workplace, 918–924
environmental noise measurement
applications, 921–922
environmental noise SPL measurement methods, 920–921
environmental sound propagation outdoors, 922
environmental vibrations, 922–924
hearing conservation programs, 919
hearing test equipment/procedures, 918–919
speech communication metrics, 920
for intensity measurement, 108, 109–112
for intensity measurement instrumentation, 104, 108
for machinery noise emission measurements, 916–918
for noise control by enclosures and cabins, 517–521
noise-induced hearing impairment, 864–865
occupational noise exposure, 864–865
for outdoor sound, 131, 132, 134–135, 140
for qualification of reverberation rooms, 86–90
for sound level measurements, 912–914
intensity instruments and measuring techniques, 914
noise-measuring instrumentation, 912–914
SPL measurement techniques, 913–914
for sound power, 82–85
in anechoic space, 97–98
in ducts, 112–113
in hemi-anechoic space, 92–96
in reverberation rooms, 209–210
for sound power measurements, 914–916
for speech intelligibility, 193
structure-borne whole-body vibration, 878–881
for vehicle exterior/interior noise, 924–926
exterior noise measurement techniques, 925–926
interior noise measurement techniques, 924
road surface sound absorption, 924
for wind turbines, 681
Standard tapping machine, 477–479
Standard threshold shift (STS), 862
Standing-wave resonance frequencies, 570
Standing waves, 37–38
Stationary random data, 45–46
Stationary signals, ms value of, 47–48
Statistical energy analysis (SEA), 453–462
composite structures, 456
diffuse sound field driving freely hung panel, 457–459
equal energy of modes of vibration, 455
modal energy, 454–455
noncorrelation between waves in two systems, 455
power balance in two-structure system, 456–457
principle of, 455
realization of equal coupling loss factor, 456
system of modal groups, 453–454
transmission loss through simple homogeneous structure, 459–462
Statistical sampling errors:
with correlation functions, 61
with mean and ms value calculation, 50–51
with spectra calculation, 59
Steady state, diffuse-field theory prediction of, 186
Steady-state drag, 633
Steady-state particle velocity, 38
Steady-state response:
damping, 587
forced vibrations, 582–584
Steady-state signals:
ms value of, 47–48
nonperiodic, 44
Steady-state sound pressure, 38
Steady-state sound pressure level, 15, 187
Steady-state sound pressure response, 161–164, 167
Steam turbines, predicting noise from, 675–676
Steam vents, predicting noise from, 676–677
Steel plates, gauges and weights of, 513–514
Stiffness-controlled boundaries, 169
Stochastic transients, 46–47
Strouhal number, 619, 620, 640, 641
Structural–acoustical analogy, 156, 158
Structural–acoustical coupling, 169–170
Structural acoustics, 389
Structural damping, 561, 579–607
analytical models of, 588
due to boundaries and reinforcements, 591–592
due to energy transport, 592–594
effects of, 579–580
energy dissipation and conversion, 589–590
measurement of, 586–588
measures of, 580–586
complex stiffness, 584–586
decay of unforced vibrations with viscous damping, 580–582
interrelation of, 586
steady forced vibrations, 582–584
models of, 588–589
retarding force in, 588
viscoelastic, 594–607
materials and material combinations, 594–595
mechanical properties of viscoelastic materials, 595–599
plates with viscoelastic coatings, 601–602
plates with viscoelastic interlayers, 606–607
structures with viscoelastic layers, 599
three-component beams with viscoelastic interlayers, 602–606
two-component beams, 599–600
Structural dynamics, 389
Structure-borne sound, 611
Structure-borne whole-body vibration criteria, 878–881
Struts, sound generation by, 638–639
Successive-approximation (SA) A/D converters, 820–822, 825
Superposition, 465–467
with multiple correlated force input, 470
in source strength identification, 471–473
Supersonic jets, 621
Surging in HVAC noise, 903–905
SVD, see Singular-valued decomposition
Synchronous averaging, 51–52
Systems of units, 20, 935
System identification, 769–777, 827
closed-loop, 771, 772, 774–776, 827, 828
in feedback control systems, 771–777
open-loop, 771, 772, 774, 775, 827, 828
System response properties, identification of, 62–63
T
Tapering functions and windows, 54–57
Tapped delay line filters, 743
Tapping machine, see Standard tapping machine
Temperature, refraction of outdoor sound and, 129–130
Temperature-frequency equivalence (viscoelastic materials), 597
Temporary threshold shifts (TTSs), 862, 869, 870
Terminal boxes/valves, HVAC, 707–709
Thermal-acoustical blanket insulation, 672
3-dB rule, 859
Three-dimensional masses, vibration isolation for, 563–567
Three-dimensional silencer analysis, 280
Three-duct muffler, 304–311
Throttling valves, aerodynamic noise of, 643–656
acoustical efficiency, 647–649
aerodynamic noise, 643–647
due to high velocities in valve outlet, 652
methods of valve noise reduction, 652–656
pipe transmission loss coefficient, 649–651
Time constant, 48
Time history signals, 43–44
Time-varying signals, 44–45
Time-varying transfer functions (ANVC systems), 771
Time-weighted average (TWA), 862
T-junctions, reflection loss of bending waves through, 409–410
TL, see Transmission loss
TNM (Traffic Noise Model), 132
Tonal disturbance control, 754–760
Tonal noise:
boilers, 663
industrial fans, 669–671
steam turbines, 676
transformers, 677, 679
from turbofan engines, 737–738
Tonal oscillations, 635
Tones:
in continuous spectrum, 7, 8
pure, 2
in sound spectra, 2–3
Traffic noise, 124–126, 132
Traffic Noise Model (TNM), 132
Trailing-edge noise, 640
Transfer function, 62
Transfer matrices (silencers), 280–281, 288–293
cross-sectional discontinuities, 289–291
pipe with uniform cross section, 289
resonators, 291–293
Transformers:
active noise control for, 723, 725
predicting noise from, 677–679
Transient signals, 45, 55
Transient sound pressure response, 174–178
Transmissibility, 557–560
and damping, 561
and inertia base, 561–562
and isolation effectiveness, 569
and isolator mass effects, 570
and machine speed, 562
of nonrigid masses, 565–567
with two-stage isolation, 572–574
Transmission, sound transmission, 71
flanking, 451–453
of large partitions, 425–427
of small partitions, 421–424
loss of ducts and pipes, 448–451
at plane interfaces, 403–406
of small partitions, 421–425
standards for, 926–928
structural, 592–593
through composite partitions, 451
through double- and multilayer partitions, 443–445
through finite-size panel, 439–443
through infinite plate:
 normal-incidence plane sound waves, 427–430
 oblique-incidence plane sound waves, 430–433
 random-incidence (diffuse) sound, 433–439
Transmission coefficient, 425
Transmission loss (TL), 284, 286
breakin, 450–451
breakout, 448–450
classical definition of, 439
for double partitions, 447–449
for ducts, 448–451
field-incidence, 435–436
of finite panels, 439–443
flanking, 439–443
impact noise isolation vs., 483–486
for inhomogeneous plates, 438–439
and mass law barrier, 443
for multilayered partitions, 443–447
normal-incidence, 427–430
oblique-incidence, 430–433
for orthotropic plates, 437
for pipes, 448–451
pipe transmission loss coefficient, 649–651
random-incidence, 434–435
resonance, 460
for single partitions, 442–443
through partitions, 423–427
through simple homogeneous structure, 459–462
Transversal filters, 743
Transverse waves, 6
Traveling waves, 37
Travel-limit isolators, 713
Trees, outdoor sound propagation and, 137–139
Trigger signal (synchronous averaging), 52
TTS, see Temporary threshold shifts
Tuned dampers, 593
Turbines:
 industrial gas turbines, 673–675
 steam turbines, 675–676
 wind turbines, 679–681
Turbofan engine noise control, 737–738
Turbulent boundary layer noise, 626–630
Two-stage vibration isolation, 572–576
Two-structure system:
 noncorrelation between waves in, 455
 power balance in, 456–457
U
Ultrasonic waves, 1
Ultrasonic exposure, 859, 860, 869–871, 873–874
Uncertainty, in outdoor sound propagation, 140–143
Underexpanded jets, 621
Underwater sound propagation, 121
Uniform pressure mode, 154, 162
Unit-area acoustical impedance, 41
U.S. armed forces hearing conservation criterion, 863, 867, 868, 874
Unit-sample sequence, 742
Unweighted (linear) averages, 48, 49
Urban noise, 907–908
V
Vacuum bubbles, 385–387
Vacuum pumps, 660
Variation, coefficient of, 50
VDV (vibration dose value), 879
Vehicle exterior/interior noise standards, 924–926
Velocity, propagation speed vs., 391
Vents, steam, predicting noise from, 676–677
Vertical motions, rocking motions coupled with, 563–564
Vibration break, 413
Vibration data, 43
Vibration dose value (VDV), 879
Vibration-induced white finger (VWF), 877
Vibration isolation, 557–578
active, see Active noise and vibration control
active machinery isolation, 840–845
for building mechanical systems, 711–715
classical model, 557–563
damping effect, 561
inertia base effects, 561–562
isolation efficiency, 560
limitations of, 562–563
machine speed effect, 562
mass-spring-dashpot system, 557–560
transmissibility, 557–560
high-frequency considerations in, 567–572
Vibration isolation (continued)
 practical isolators, 576–578
 for rooftop air conditioning units, 716
 for three-dimensional masses, 563–567
 two-stage, 572–576
 uses of, 557
Vibration sources:
 acoustic, 905, 907
 loading of, 567–568
Vibration total value (VTV), 879
Viscoelastic damping, 594–607
 beams:
 three-component, with viscoelastic interlayers, 602–606
 two-component, 599–600
 materials and material combinations, 594–595
 mechanical properties of viscoelastic materials, 595–599
 plates:
 with viscoelastic coatings, 601–602
 with viscoelastic interlayers, 606–607
 structures with viscoelastic layers, 599
Viscous damping, 561, 589n.
Viscous damping coefficient, 580
Viscous damping ratio, 583
Volume-displacing sound sources, radiation by, 356–361
Volume velocity, 146–147, 359–361
Voyager lightweight aircraft, 866
VTV (vibration total value), 879
VWF (vibration-induced white finger), 877

W
 Walls:
 flexible-wall effect on sound pressure, 166–171
 for mechanical rooms, 710
 Wall pressure wavenumber-frequency spectrum, 627, 629–630
 Wave equation, 25–34, 149
 continuity equation in, 27
 equation of motion in, 25–26
 gas law in, 26–27
 one-dimensional:
 backward-traveling plane wave, 32
 general solution to, 27–28
 intensity, 31–32
 outwardly traveling plane wave, 28–31
 particle velocity, 31
 root-mean-square sound pressure, 31
 solutions to, 27–34
 spherical wave, 32–34
 in rectangular coordinates, 27
 Waveguide absorber, 593
 Wavelength, 7
 Wave motion (in solids), 390–393
 Wavenumber, 29
 Weighted averages, 48–49
 WHO, see World Health Organization
 Whole-body vibration effects, 875–877
 Wiener filter, 749
 Wiener–Khinchine relationship, 50
 Wind turbines, predicting noise from, 679–681
 Workplace noise standards, 918–924
 Workshops, see Industrial workshops
 Workstations, sound propagation between, 202, 204–205
 World Health Organization (WHO), 871, 907
 Wrappings, 552–555
 acoustical enclosures vs., 521
 close-fitting enclosures vs., 552
 defined, 517

Y
 Youla transform, 781–784
 Young’s modulus, 391, 493, 595

Z
 “Zone of silence,” 345, 846, 847
 Zoom transforms, 57