SOLUTIONS TO PARALLEL AND DISTRIBUTED COMPUTING PROBLEMS
CONTENTS

<table>
<thead>
<tr>
<th>Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
</tbody>
</table>

1. Distributed Cellular Automata: Large-Scale Simulation of Natural Phenomena
 P. M. A. Sloot, J. A. Kaandorp, A. G. Hoekstra, and B. J. Overeinder
 1.1 Introduction 1
 1.2 Background of Cellular Automata Concepts 4
 1.3 Execution Models for Cellular Automata 12
 1.4 Cellular Automata as Models for Fluid Flow 17
 1.5 Selected Applications 25
 1.6 Summary 41

2. Parallel Implementations of Evolutionary Algorithms
 Hartmut Schmeck, Jürgen Branke, and Udo Kohlmorgen
 2.1 Introduction 47
 2.2 Standard Approaches to Parallelizing Evolutionary Algorithms 48
 2.3 Parallel Global Selection 54
 2.4 Setup for Experimental Investigation 56
 2.5 Test Problems 58
 2.6 Discussion of Results 60
 2.7 Summary 66

3. Toward Hybrid Biologically Inspired Heuristics
 El-Ghazali Talbi
 3.1 Introduction 69
 3.2 Design Issues 70
 3.3 Implementation Issues 78
CONTENTS

3.4 A Grammar for Extended Hybridization Schemes 80
3.5 Summary 82

Azzedine Boukerche and Sajal K. Das
4.1 Introduction 87
4.2 What Is Parallel Simulation? 88
4.3 Previous and Related Work 91
4.4 Simulated Annealing: Conservative Partitioning 93
4.5 Genetic Algorithm: Optimistic Load Balancing 98
4.6 Stochastic Learning Automata 102
4.7 Summary 106

5. An Introduction to Genetic-Based Scheduling in Parallel Processor Systems 111
Albert Y. Zomaya, Richard C. Lee, and Stephan Olariu
5.1 Introduction 111
5.2 Task Scheduling and Problem Formulation 112
5.3 The Proposed Approach 119
5.4 Case Studies 128
5.5 Summary 131

Mitchell D. Theys, Tracy D. Braun, Yu-Kwong Kwok, Howard Jay Siegel, and Anthony A. Maciejewski
6.1 Introduction 135
6.2 Problem Descriptions 137
6.3 Genetic Algorithm Overview 140
6.4 Static Matching and Scheduling of Subtasks 141
6.5 Semistatic Matching and Scheduling of Subtasks 156
6.6 Static Matching and Scheduling for Meta-Tasks 165
6.7 Summary 174

7. Evolving Cellular Automata-Based Algorithms for Multiprocessor Scheduling 179
F. Seredynski
7.1 Introduction 179
7.2 Multiprocessor Scheduling 180
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Cellular Automata</td>
<td>182</td>
</tr>
<tr>
<td>7.4</td>
<td>The Concept of the CA-Based Scheduler</td>
<td>185</td>
</tr>
<tr>
<td>7.5</td>
<td>Defining Local Neighborhood</td>
<td>187</td>
</tr>
<tr>
<td>7.6</td>
<td>CA-Based Scheduler</td>
<td>193</td>
</tr>
<tr>
<td>7.7</td>
<td>Experiments</td>
<td>195</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary</td>
<td>205</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>8.2</td>
<td>The Task-Mapping Problem</td>
<td>210</td>
</tr>
<tr>
<td>8.3</td>
<td>Genetic Algorithms</td>
<td>211</td>
</tr>
<tr>
<td>8.4</td>
<td>Parallel Genetic Algorithms</td>
<td>214</td>
</tr>
<tr>
<td>8.5</td>
<td>Task Mapping with Genetic Algorithms</td>
<td>216</td>
</tr>
<tr>
<td>8.6</td>
<td>Discussion</td>
<td>222</td>
</tr>
<tr>
<td>8.7</td>
<td>Task Mapping with Neural Networks</td>
<td>223</td>
</tr>
<tr>
<td>8.8</td>
<td>Summary</td>
<td>228</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>9.2</td>
<td>Static Scheduling of Parallel Programs to Message-Passing Architectures</td>
<td>233</td>
</tr>
<tr>
<td>9.3</td>
<td>Overview of Genetic Algorithms</td>
<td>238</td>
</tr>
<tr>
<td>9.4</td>
<td>Scheduling Tasks to a Homogeneous System</td>
<td>239</td>
</tr>
<tr>
<td>9.5</td>
<td>Scheduling Tasks to a Heterogeneous System</td>
<td>245</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary</td>
<td>252</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>255</td>
</tr>
<tr>
<td>10.2</td>
<td>Neural-Network Definition</td>
<td>256</td>
</tr>
<tr>
<td>10.3</td>
<td>Adaptive Equalizer for Digital Mobile-Radio Channels</td>
<td>258</td>
</tr>
<tr>
<td>10.4</td>
<td>Channel Assignment in Mobile-Radio Systems</td>
<td>260</td>
</tr>
<tr>
<td>10.5</td>
<td>Neural Networks Applied to the Channel-Assignment Problem</td>
<td>261</td>
</tr>
<tr>
<td>10.6</td>
<td>GSM Radio Resource Management</td>
<td>261</td>
</tr>
<tr>
<td>10.7</td>
<td>Neural Fraud Detection in Mobile-Phone Systems</td>
<td>262</td>
</tr>
<tr>
<td>10.8</td>
<td>Summary</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>269</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Imtiaz Ahmad, Department of Electrical and Computer Engineering, Kuwait University, Kuwait

Ishfaq Ahmad, Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Salim Alaoui, Institute for Computational Sciences and Informatics, George Mason University, Fairfax, Virginia

Azzeddine Boukerche, Department of Computer Science, University of North Texas, Denton, Texas

Jürgen Branke, Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Universität Karlsruhe, Karlsruhe, Germany

Tracy D. Braun, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana

Sajal K. Das, Department of Computer Science and Engineering, University of Texas, Arlington, Texas

Muhammad Dhodhi, Department of Electrical and Computer Engineering, Kuwait University, Kuwait

Tarek El-Ghazawi, Institute for Computational Sciences and Informatics (CSI), George Mason University, Fairfax, Virginia

Ophir Freider, Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois

Jaafar Gaber, Université de Technologie de Belfort Montbéliard

A. G. Hoekstra, Faculty of Sciences, Section of Computational Science, University of Amsterdam, Kruislaan 403, Amsterdam, The Netherlands

J. A. Kaandorp, Faculty of Sciences, Section of Computational Science, University of Amsterdam, Kruislaan 403, Amsterdam, The Netherlands

Udo Kohlmorgen, Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Universität Karlsruhe, Karlsruhe, Germany
For some years now, techniques inspired by natural phenomena that are normally studied in biological sciences have gained great acceptance as efficient vehicles for solving a range of problems in a wide variety of disciplines. More recently, biologically inspired (bio-inspired, for short) techniques such as fuzzy logic, neural networks, simulated annealing, genetic algorithms, evolutionary computing models, and other bio-inspired techniques have been used to solve problems in a number of key areas in parallel and distributed computing.

Most if not all bio-inspired techniques have an inherently parallel structure. Thus, solutions based on such methods can be conveniently implemented on parallel computers. Furthermore, bio-inspired methods are considered to be “intelligent” because of their capability in adapting in situ in response to changes in the environment (e.g., solution space) that were not predicted in advance.

This compendium is composed of ten chapters that deal with the different issues and application possibilities that bio-inspired paradigms can offer in solving problems in parallel and distributed computing. The chapters present a range of subjects and applications. For example, Chapters 1 and 2 deal with the parallel and distributed computing of cellular automata and evolutionary algorithms, which are two very popular classes of bio-inspired methods. Speeding up bio-inspired algorithms will have a great impact on the applicability of such techniques to a wider range of problems. Chapter 3 reviews a number of bio-inspired techniques and provides a comprehensive framework to classify and study them. Chapter 4 investigates the use of a number of bio-inspired techniques, such as the simulated annealing algorithm and genetic algorithms, to solve problems that arise in parallel simulations. Chapters 5–9 propose techniques to solve different instances of the scheduling and load-balancing problems that are critical for the performance of parallel and distributed computers. Scheduling problems in parallel and distributed computing systems dealing with the mapping of tasks (e.g., parts of a program) onto an autonomous target machine consisting of several processing elements (or computers), so as to meet some performance objective such as minimum execution time and acceptable load balancing. Finally, Chapter 10 applies neural networks to solve problems in wireless communication systems. Mobile computing and communications are areas that are growing at a very fast pace. A great deal of overlap exists between the underlying principles of mobile computing and communication and parallel and distributed computing.
Overall, encouraging results have been obtained by the contributors of the chapters that appear in this book. This means that bio-inspired methods can become viable alternatives to classic solutions to a wide variety of problems in parallel and distributed computing research.

In putting together this book, we are hoping to increase awareness in the parallel and distributed computing community of the potential of such new paradigms. We also want to generate more interest and concerted effort in studying these paradigms and applying them to a wider range of problems in high-performance computing (i.e., parallel, distributed, and mobile).

Ideally, the reader of the book should be someone who is familiar with parallel and distributed computing and would like to learn more about how bio-inspired paradigms can be used to solve problems in their areas. In general, the book could be used by a wider audience such as graduate students, senior undergraduate students, researchers, instructors, and practitioners in Computer Science and Engineering.

Acknowledgments

We express our thanks and deepest appreciation to the members of the Parallel Computing Research Laboratory at the Electrical and Electronic Engineering Department, The University of Western Australia and the Computer Science Departments at the University of Missouri-Rolla and Old Dominion University.

We also extend our thanks to Andrew Smith, George Telecki, and Lina Lopez (from Wiley) for their encouragement and guidance. Finally, many thanks go to our families for their help, support, and patience.

ALBERT Y. ZOMAYA
FIKRET ERCAL
STEPHAN OLARIU

Perth, Western Australia
Rolla, Missouri
Norfolk, Virginia
August 2000