Contents

Biography
Abbreviations
Introduction to Second Edition

1. **Heterocyclic Nomenclature**
 - Six-membered aromatic heterocycles
 - Five-membered aromatic heterocycles
 - Non-aromatic heterocycles
 - Small-ring heterocycles

2. **Structures of Heteroaromatic Compounds**
 - Structures of benzene and naphthalene
 - Structures of pyridines and pyridiniums
 - Structures of quinolines and isoquinolines
 - Structures of diazines (illustrated using pyrimidine)
 - Structures of pyrroles, thiophenes and furans
 - Structure of indoles
 - Structures of azoles (illustrated using imidazole)

3. **Common Reaction Types in Heterocyclic Chemistry**
 - Introduction
 - Acidity and basicity
 - Electrophilic substitution of aromatic molecules
 - Nucleophilic substitution of aromatic molecules
 - Radical substitution of heterocycles
 - C-Metallated heterocycles as nucleophiles
 - Generation of C-metallated heterocycles
 - Dimethylformamide dimethyl acetal (DMFDMA)
 - Formation and hydrolysis of imine/enamine
 - Common synthetic equivalents of carbonyl compounds in ring synthesis
 - Cycloaddition reactions

4. **Palladium in Heterocyclic Chemistry**
 - Palladium(0)-catalysed (and related) reactions
 - Addition to alkenes: the Heck reaction
 - Carbonylation reactions
 - Cross-coupling reactions between heteroatom nucleophiles and halides – making carbon–heteroatom bonds
 - Triflates as substrates for palladium-catalysed reactions
 - Mechanisms of palladium(0)-catalysed processes
 - Reactions involving electrophilic palladation
 - Copper-catalysed amination
 - Selectivity
5. **Pyridines**

- Electrophilic addition to nitrogen 33
- Electrophilic substitution at carbon 34
- Nucleophilic substitution 35
- Nucleophilic addition to pyridinium salts 36
- C-metallated pyridines 37
- Palladium(0)-catalysed reactions 39
- Oxidation and reduction 39
- Pericyclic reactions 40
- Alkyl and carboxylic acid substituents 40
- Oxygen substituents 41
- N-Oxides 42
- Amine substituents 43
- Ring synthesis – disconnections 43
- Synthesis of pyridines from 1,5-dicarbonyl compounds 44
- Synthesis of pyridines from an aldehyde, two equivalents of a 1,3-dicarbonyl compound and ammonia 45
- Synthesis of pyridines from 1,3-dicarbonyl compounds and a C₂N unit 45

Exercises 47

6. **Diazines**

- Electrophilic addition to nitrogen 49
- Electrophilic substitution at carbon 49
- Nucleophilic substitution 50
- Radical substitution 52
- C-Metallated diazines 52
- Palladium(0)-catalysed reactions 53
- Pericyclic reactions 54
- Oxygen substituents 55
- N-Oxides 57
- Amine substituents 57
- Ring synthesis – disconnections 58
- Synthesis of pyridazines from 1,4-dicarbonyl compounds 58
- Synthesis of pyrimidines from 1,3-dicarbonyl compounds 58
- Synthesis of pyrazines from 1,2-dicarbonyl compounds 59
- Synthesis of pyrazines from α-amino-carbonyl compounds 60
- Benzodiazines 60

Exercises 61

7. **Quinolines and Isoquinolines**

- Electrophilic addition to nitrogen 62
- Electrophilic substitution at carbon 62
- Nucleophilic substitution 63
- Nucleophilic addition to quinolinium/isoquinolinium salts 64
- C-Metallated quinolines and isoquinolines 65
- Palladium(0)-catalysed reactions 65
- Oxidation and reduction 66
- Alkyl substituents 66
- Oxygen substituents 67
- N-Oxides 67
- Ring synthesis – disconnections 67
- Synthesis of quinolines from anilines 67
- Synthesis of quinolines from ortho-aminoaryl ketones or aldehydes 68
- Synthesis of isoquinolines from 2-arylethammines 69
Synthesis of isoquinolines from aryl-aldehydes and an aminoacetaldehyde acetal 69
Synthesis of isoquinolines from ortho-alkynyl aryl-aldehydes or corresponding imines 70
Exercises 70

8. Pyryliums, Benzopyryliums, Pyrones and Benzopyrones 71

Pyrylium salts 71
Electrophiles 71
Nucleophilic addition 71
Ring-opening reactions of 2H-pyrans 71
Oxygen substituents – pyrones and benzopyrones 73
Ring synthesis of pyryliums from 1,5-diketones 74
Ring synthesis of 4-pyrones from 1,3,5-triketones 75
Ring synthesis of 2-pyrones from 1,3-keto-aldehydes 75
Ring synthesis of 1-benzopyryliums, coumarins and chromones 76
Exercises 77

9. Pyrroles 78

Electrophilic substitution at carbon 78
N-Deprotonation and N-metallated pyrroles 80
C-Metallated pyrroles 80
Palladium(0)-catalysed reactions 81
Oxidation and reduction 81
Pericyclic reactions 82
Reactivity of side-chain substituents 82
The ‘pigments of life’ 82
Ring synthesis – disconnections 83
Synthesis of pyrroles from 1,4-dicarbonyl compounds 83
Synthesis of pyrroles from α-amino-ketones 83
Synthesis of pyrroles using isocyanides 84
Exercises 85

10. Indoles 86

Electrophilic substitution at carbon 86
N-Deprotonation and N-metallated indoles 89
C-Metallated indoles 90
Palladium(0)-catalysed reactions 91
Oxidation and reduction 92
Pericyclic reactions 92
Reactivity of side-chain substituents 93
Oxygen substituents 94
Ring synthesis – disconnections 94
Synthesis of indoles from arylhydrazones 94
Synthesis of indoles from ortho-nitrotoluenes 94
Synthesis of indoles from ortho-aminoaryl alkynes 96
Synthesis of indoles from ortho-alkylaryl isocyanides 96
Synthesis of indoles from ortho-acyl anilides 96
Synthesis of isatins from anilines 97
Synthesis of oxindoles from anilines 97
Synthesis of indoxyls from anthranilic acids 97
Azaindoles 97
Exercises 98

11. Furans and Thiophenes 99

Electrophilic substitution at carbon 99
C-Metallated thiophenes and furans 101
Palladium(0)-catalysed reactions 102
Oxidation and reduction 102
Pericyclic reactions 103
Oxygen substituents 104
Ring synthesis – disconnections 105
Synthesis of furans and thiophenes from 1,4-dicarbonyl compounds 105
Exercises 106

12. 1,2-Azoles and 1,3-Azoles 107

Introduction 107
Electrophilic addition to N 107
Electrophilic substitution at C 109
Nucleophilic substitution of halogen 110
N-Deprotonation and N-metallated imidazoles and pyrazoles 110
C-Metallated N-substituted imidazoles and pyrazoles, and C-metallated
thiazoles and isothiazoles 111
C-Deprotonation of oxazoles and isoxazoles 112
Palladium(0)-catalysed reactions 113
1,3-Azolium ylides 113
Reductions 114
Pericyclic reactions 114
Oxygen and amine substituents 115
1,3-Azoles ring synthesis – disconnections 116
Synthesis of thiazoles and imidazoles from α-halo-ketones 116
Synthesis of 1,3-azoles from 1,4-dicarbonyl compounds 117
Synthesis of 1,3-azoles using tosylmethyl isocyanide 118
Synthesis of 1,3-azoles via dehydrogenation 118
1,2-Azoles ring synthesis – disconnections 119
Synthesis of pyrazoles and isoxazoles from 1,3-dicarbonyl compounds 119
Synthesis of isoxazoles and pyrazoles from alkynes 120
Synthesis of isothiazoles from β-amino α, β-unsaturated carbonyl compounds 121
Exercises 121

13. Purines 122

Electrophilic addition to nitrogen 124
Electrophilic substitution at carbon 125
N-Deprotonation and N-metallated purines 125
Oxidation 126
Nucleophilic substitution 126
C-Metallated purines by direct deprotonation or halogen–metal exchange 128
Palladium(0)-catalysed reactions 128
Purines with oxygen and amine substituents 128
Ring synthesis – disconnections 130
Synthesis of purines from 4,5-diaminopyrimidines 130
Synthesis of purines from 5-aminoimidazole-4-carboxamide 131
'One-step syntheses' 131
Exercises 131

14. Heterocycles with More than Two Heteroatoms: Higher Azoles (5-Membered) and Higher Azines (6-Membered) 132

Higher Azoles 132
Introduction 132
Higher azoles containing nitrogen as the only ring heteroatom: triazoles, tetrazole and pentazole 132
15. Heterocycles with Ring-Junction Nitrogen (Bridgehead Nitrogen) 143
 Introduction 143
 Indolizines 144
 Azaindolizines 144
 Synthesis of indolizines and azaindolizines 146
 Quinoliziniums and quinolizinones 147
 Heteropyrrolizines (pyrrolizines containing additional heteroatoms) 148
 Cyclazines 148
 Exercises 149

16. Non-Aromatic Heterocycles 150
 Introduction 150
 Three-membered rings 150
 Four-membered rings 153
 Five- and six-membered rings 153
 Ring synthesis 155

17. Heterocycles in Nature 158
 Heterocyclic α-amino acids and related substances 158
 Heterocyclic vitamins – co-enzymes 159
 Porphobilinogen and the ‘Pigments of Life’ 162
 Deoxyribonucleic acid (DNA), the store of genetic information,
 and ribonucleic acid (RNA), its deliverer 163
 Heterocyclic secondary metabolites 165

18. Heterocycles in Medicine 167
 Medicinal chemistry – how drugs function 167
 Drug discovery 168
 Drug development 169
 The neurotransmitters 169
 Histamine 170
 Acetylcholine (ACh) 171
 Anticholinesterase agents 172
 5-Hydroxytryptamine (5-HT) (serotonin) 172
 Adrenaline and noradrenaline 173
 Other significant cardiovascular drugs 173
 Drugs acting specifically on the CNS 173
 Other enzyme inhibitors 174
 Anti-infective agents 175
 Antiparasitic drugs 175
 Antibacterial drugs 176
 Antiviral drugs 177
 Anticancer drugs 177
 Photochemotherapy 178

19. Applications and Occurrences of Heterocycles in Everyday Life 180
 Introduction 180
 Dyes and pigments 180
Polymers 181
Pesticides 182
Explosives 184
Food and drink 186
Heterocyclic chemistry of cooking 187
Natural and synthetic food colours 190
Flavours and fragrances (F&F) 190
Toxins 192
Electrical and electronic 193

Index 195