Contents

Foreword to the Second Edition xvii
Foreword to the First Edition xix
Preface to the Second Edition xxi
Acknowledgments xxv
Thoughts for Instructors xxvii
Contributors xxxiii
Acronyms xli

1 Introduction 1
Gregory S. Parnell and Patrick J. Driscoll

1.1 Purpose 1
1.2 System 3
1.3 Stakeholders 3
1.4 System Life Cycle 7
1.5 Systems Thinking 10
1.6 Systems Engineering Thought Process 12
1.7 Systems Engineering 13
1.8 Engineering Management 15
1.9 Systems Decision Process 16
1.10 Overview 21
1.11 Exercises 21
References 23
References vii
PART I SYSTEMS THINKING 25

2 Systems Thinking 27
 Patrick J. Driscoll

 2.1 Introduction 27
 2.2 Structure 32
 2.3 Classification 33
 2.4 Boundaries 35
 2.5 Visibility 39
 2.6 IDEF0 Models 40
 2.7 Mathematical Structure 50
 2.8 Spatial Arrangement 54
 2.9 Evolution 58
 2.10 Summary 58
 2.11 Exercises 59
 References 63

3 System Life Cycle 65
 Patrick J. Driscoll and Paul Kucik

 3.1 Introduction 65
 3.2 System Life Cycle Model 68
 3.2.1 Establish System Need 70
 3.2.2 Develop System Concept 70
 3.2.3 Design and Develop System 70
 3.2.4 Produce System 71
 3.2.5 Deploy System 72
 3.2.6 Operate System 72
 3.2.7 Retire System 73
 3.3 Other Major System Life Cycle Models 74
 3.4 Risk Management in the System Life Cycle 77
 3.4.1 Risk Identification 78
 3.4.2 Risk Assessment 83
 3.4.3 Risk Mitigation 88
 3.5 Summary 89
 3.6 Exercises 90
 References 92

4 Systems Modeling and Analysis 95
 Paul D. West, John E. Kobza, and Simon R. Goerger

 4.1 Introduction 95
 4.2 Developing System Measures 96
 4.3 Modeling the System Design 98
 4.3.1 What Models Are 99
CONTENTS

4.3.2 Why We Use Models 99
4.3.3 Role of Models in Solution Design 101
4.3.4 Qualities of Useful Models 102

4.4 The Modeling Process: How We Build Models 104
4.4.1 Create a Conceptual Model 105
4.4.2 Construct the Model 106
4.4.3 Exercise the Model 107
4.4.4 Revise the Model 108

4.5 The Model Toolbox: Types of Models, Their Characteristics, and Their Uses 109
4.5.1 Characteristics of Models 112
4.5.2 The Model Toolbox 114

4.6 Simulation Modeling 121
4.6.1 Analytical Solutions Versus Simulation; When It Is Appropriate to Use Simulation 122
4.6.2 Simulation Tools 123

4.7 Determining Required Sample Size 129

4.8 Summary 131
4.9 Exercises 132
References 134

5 Life Cycle Costing 137

Edward Pohl and Heather Nachtmann

5.1 Introduction to Life Cycle Costing 137
5.2 Introduction to Cost Estimating Techniques 139
5.2.1 Types of Costs 143

5.3 Cost Estimation Techniques 145
5.3.1 Estimating by Analogy Using Expert Judgment 145
5.3.2 Parametric Estimation Using Cost Estimating Relationships 146
5.3.3 Learning Curves 160

5.4 System Cost for Systems Decision Making 167
5.4.1 Time Value of Money 168
5.4.2 Inflation 168
5.4.3 Net Present Value 171
5.4.4 Breakeven Analysis and Replacement Analysis 172

5.5 Risk and Uncertainty in Cost Estimation 172
5.5.1 Monte Carlo Simulation Analysis 173
5.5.2 Sensitivity Analysis 177

5.6 Summary 178
5.7 Exercises 178
References 181
PART II SYSTEMS ENGINEERING 183

6 Introduction to Systems Engineering 185
 Gregory S. Parnell
 6.1 Introduction 185
 6.2 Definition of System and Systems Thinking 185
 6.3 Brief History of Systems Engineering 186
 6.4 Systems Trends that Challenge Systems Engineers 186
 6.5 Three Fundamental Tasks of Systems Engineers 189
 6.6 Relationship of Systems Engineers to Other Engineering Disciplines 192
 6.7 Education, Training, and Knowledge of Systems Engineers 192
 6.7.1 Next Two Chapters 193
 6.8 Exercises 193
 Acknowledgment 194
 References 194

7 Systems Engineering in Professional Practice 197
 Roger C. Burk
 7.1 The Systems Engineer in the Engineering Organization 197
 The Systems Engineering Job 199
 Three Systems Engineering Perspectives 199
 Organizational Placement of Systems Engineers 199
 7.2 Systems Engineering Activities 200
 Establish System Need 201
 Develop System Concept 202
 Design and Develop the System 202
 Produce System 202
 Deploy System 203
 Operate System 203
 Retire System 203
 7.3 Working with the Systems Development Team 203
 The SE and the Program Manager 203
 The SE and the Client, the User, and the Consumer 203
 The SE and the CTO or CIO 205
 The SE and the Operations Researcher or System Analyst 205
 The SE and the Configuration Manager 206
 The SE and the Life Cycle Cost Estimator 206
 The SE and the Engineering Manager 206
 The SE and the Discipline Engineer 207
 The SE and the Test Engineer 207
 The SE and the Specialty Engineer 207
 The SE and the Industrial Engineer 208
CONTENTS

7.4 Building an Interdisciplinary Team
- Team Fundamentals 208
- Team Attitude 209
- Team Selection 210
- Team Life Cycle 210
- Cross-Cultural Teams 211

7.5 Systems Engineering Responsibilities
- Systems Engineering Management Plan (SEMP) 212
- Technical Interface with Users and Consumers 213
- Analysis and Management of Systems Requirements 213
- System Architcting 216
- Systems Engineering Tools and Formal Models 217
- Interface Control Documents (ICDs) 218
- Test and Evaluation Master Plan (TEMP) 218
- Configuration Management (CM) 218
- Specialty Engineering 218
- Major Program Technical Reviews 220
- System Integration and Test 221

7.6 Roles of the Systems Engineer 221

7.7 Characteristics of the Ideal Systems Engineer 222

7.8 Summary 223

7.9 Exercises 224

Acknowledgment 225

References 225

8 System Reliability

Edward Pohl

8.1 Introduction to System Effectiveness 227
8.2 Reliability Modeling 228
8.3 Mathematical Models in Reliability 229
 - 8.3.1 Common Continuous Reliability Distributions 233
 - 8.3.2 Common Discrete Distributions 242
8.4 Basic System Models 244
 - 8.4.1 Series System 245
 - 8.4.2 Parallel System 245
 - 8.4.3 K-out-of-N Systems 247
 - 8.4.4 Complex Systems 247
8.5 Component Reliability Importance Measures 249
 - 8.5.1 Importance Measure for Series System 249
 - 8.5.2 Importance Measure for Parallel System 250
8.6 Reliability Allocation and Improvement 250
8.7 Markov Models of Repairable Systems 253
 - 8.7.1 Kolmogorov Differential Equations 253
CONTENTS

10.3 Functional and Requirements Analyses 314
 10.3.1 Terminology 315
 10.3.2 Importance of Functional Analysis 315
 10.3.3 Functional Analysis Techniques 316
 10.3.4 Requirements Analysis 324
 10.3.5 At Completion 325
10.4 Value Modeling 326
 10.4.1 Definitions Used In Value Modeling 326
 10.4.2 Qualitative Value Modeling 327
 10.4.3 Quantitative Value Model 331
 10.4.4 At Completion of Value Modeling 340
10.5 Output of the Problem Definition Phase 340
 10.5.1 Discussion 340
 10.5.2 Conclusion 341
10.6 Illustrative Example: Systems Engineering Curriculum
 Management System (CMS)—Problem Definition 341
10.7 Exercises 350
References 350

11 Solution Design 353

 Paul D. West

11.1 Introduction to Solution Design 353
11.2 Survey of Idea Generation Techniques 355
 11.2.1 Brainstorming 355
 11.2.2 Brainwriting 358
 11.2.3 Affinity Diagramming 358
 11.2.4 Delphi 358
 11.2.5 Groupware 361
 11.2.6 Lateral and Parallel Thinking and Six Thinking Hats 361
 11.2.7 Morphology 361
 11.2.8 Ends–Means Chains 363
 11.2.9 Existing or New Options 363
 11.2.10 Other Ideation Techniques 363
11.3 Turning Ideas into Alternatives 365
 11.3.1 Alternative Generation Approaches 365
 11.3.2 Feasibility Screening 366
11.4 Analyzing Candidate Solution Costs 368
11.5 Improving Candidate Solutions 369
 11.5.1 Modeling Alternatives 369
 11.5.2 Simulating Alternatives 369
 11.5.3 Design of Experiments 370
 11.5.4 Fractional Factorial Design 376
 11.5.5 Pareto Analysis 386
11.6 Summary 388
11.7 Illustrative Example: Systems Engineering Curriculum Management System (CMS)—Solution Design 388
11.8 Exercises 390
References 391

12 Decision Making 395
Michael J. Kwinn, Jr., Gregory S. Parnell, and Robert A. Dees

12.1 Introduction 395
12.2 Preparing to Score Candidate Solutions 396
 12.2.1 Revised Problem Statement 396
 12.2.2 Value Model 397
 12.2.3 Candidate Solutions 397
 12.2.4 Life Cycle Cost Model 397
 12.2.5 Modeling and Simulation Results 397
 12.2.6 Confirm Value Measure Ranges and Weights 397
12.3 Five Scoring Methods 398
 12.3.1 Operations 398
 12.3.2 Testing 398
 12.3.3 Modeling 399
 12.3.4 Simulation 399
 12.3.5 Expert Opinion 399
 12.3.6 Revisit Value Measures and Weights 400
12.4 Score Candidate Solutions or Candidate Components 400
 12.4.1 Software for Decision Analysis 401
 12.4.2 Candidate Solution Scoring and Value Calculation 402
 12.4.3 Candidate Components Scoring and System Optimization 404
12.5 Conduct Sensitivity Analysis 409
 12.5.1 Analyzing Sensitivity on Weights 410
 12.5.2 Sensitivity Analysis on Weights Using Excel 411
12.6 Analyses of Uncertainty and Risk 412
 12.6.1 Risk Analysis—Conduct Monte Carlo Simulation on Measure Scores 413
12.7 Use Value-Focused Thinking to Improve Solutions 417
 12.7.1 Decision Analysis of Dependent Risks 419
12.8 Conduct Cost Analysis 423
12.9 Conduct Cost/Benefit Analysis 423
12.10 Decision-Focused Transformation (DFT) 424
 12.10.1 Transformation Equations 425
 12.10.2 Visual Demonstration of Decision-Focused Transformation 427
 12.10.3 Cost/Benefit Analysis and Removal of Candidate Solutions 427
12.11 Prepare Recommendation Report and Presentation 432
CONTENTS

14.2.4 Systems Engineers Have Key Roles Throughout the System Life Cycle 481

14.3 A Systems Decision Process Is Required for Complex Systems Decisions 481

14.3.1 Problem Definition Is the Key to Systems Decisions 481

14.3.2 If We Want Better Decisions, We Need Better System Solution Designs 482

14.3.3 We Need to Identify the Best Value for the Resources 482

14.3.4 Solution Implementation Requires Planning, Executing, and Monitoring and Controlling 482

14.4 Systems Engineering Will Become More Challenging 483

Appendix A SDP Trade Space Concepts 485

Index 491