Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Early developments</td>
<td>1</td>
</tr>
<tr>
<td>1.2 State of the large power semiconductor technology</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Power ratings</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Losses</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 Suitability for large power conversion</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4 Future developments</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Voltage and current source conversion</td>
<td>6</td>
</tr>
<tr>
<td>1.4 The pulse and level number concepts</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Line-commutated conversion (LCC)</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Self-commutating conversion (SCC)</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1 Pulse width modulation (PWM)</td>
<td>11</td>
</tr>
<tr>
<td>1.6.2 Multilevel voltage source conversion</td>
<td>12</td>
</tr>
<tr>
<td>1.6.3 High-current self-commutating conversion</td>
<td>13</td>
</tr>
<tr>
<td>1.7 Concluding statement</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>13</td>
</tr>
</tbody>
</table>

2 Principles of Self-Commutating Conversion

2.1 Introduction	15
2.2 Basic VSC operation	15
2.2.1 Power transfer control	16
2.3 Main converter components	19
2.3.1 DC capacitor	20
2.3.2 Coupling reactance	20
2.3.3 The high-voltage valve	21
2.3.4 The anti-parallel diodes	23
2.4 Three-phase voltage source conversion	23
2.4.1 The six-pulse VSC configuration	23
2.4.2 Twelve-pulse VSC configuration	27
2.5 Gate driving signal generation	27
2.5.1 General philosophy	27
2.5.2 Selected harmonic cancellation 30

2.5.3 Carrier-based sinusoidal PWM 31

2.6 Space-vector PWM pattern 34

2.6.1 Comparison between the switching patterns 40

2.7 Basic current source conversion operation 42

2.7.1 Analysis of the CSC waveforms 43

2.8 Summary 43

References 44

3 Multilevel Voltage Source Conversion 47

3.1 Introduction 47

3.2 PWM-assisted multibridge conversion 48

3.3 The diode clamping concept 49

3.3.1 Three-level neutral point clamped VSC 49

3.3.2 Five-level diode-clamped VSC 53

3.3.3 Diode clamping generalization 56

3.4 The flying capacitor concept 61

3.4.1 Three-level flying capacitor conversion 61

3.4.2 Multi-level flying capacitor conversion 62

3.5 Cascaded H-bridge configuration 65

3.6 Modular multilevel conversion (MMC) 67

3.7 Summary 70

References 70

4 Multilevel Reinjection 73

4.1 Introduction 73

4.2 The reinjection concept in line-commutated current source conversion 74

4.2.1 The reinjection concept in the double-bridge configuration 76

4.3 Application of the reinjection concept to self-commutating conversion 78

4.3.1 Ideal injection signal required to produce a sinusoidal output waveform 78

4.3.2 Symmetrical approximation to the ideal injection 82

4.4 Multilevel reinjection (MLR) – the waveforms 85

4.5 MLR implementation – the combination concept 87

4.5.1 CSC configuration 87

4.5.2 VSC configuration 89

4.6 MLR implementation – the distribution concept 94

4.6.1 CSC configuration 94

4.6.2 VSC configuration 95

4.7 Summary 96

References 97

5 Modelling and Control of Converter Dynamics 99

5.1 Introduction 99

5.2 Control system levels 100

5.2.1 Firing control 100
5.2.2 Converter state control 101
5.2.3 System control level 102
5.3 Non-linearity of the power converter system 102
5.4 Modelling the voltage source converter system 103
 5.4.1 Conversion under pulse width modulation 103
5.5 Modelling grouped voltage source converters operating with fundamental frequency switching 107
5.6 Modelling the current source converter system 120
 5.6.1 Current source converters with pulse width modulation 120
5.7 Modelling grouped current source converters with fundamental frequency switching 129
5.8 Non-linear control of VSC and CSC systems 145
5.9 Summary 151
References 152

6 PWM–HVDC Transmission 153
 6.1 Introduction 153
 6.2 State of the DC cable technology 154
 6.3 Basic self-commutating DC link structure 154
 6.4 Three-level PWM structure 156
 6.4.1 The cross sound submarine link 156
 6.5 PWM–VSC control strategies 165
 6.6 DC link support during AC system disturbances 166
 6.6.1 Strategy for voltage stability 166
 6.6.2 Damping of rotor angle oscillation 166
 6.6.3 Converter assistance during grid restoration 167
 6.6.4 Contribution of the voltage source converter to the AC system fault level 167
 6.6.5 Control capability limits of a PWM–VSC terminal 168
 6.7 Summary 169
References 169

7 Ultra High-Voltage VSC Transmission 171
 7.1 Introduction 171
 7.2 Modular multilevel conversion 172
 7.3 Multilevel H-bridge voltage reinjection 174
 7.3.1 Steady state operation of the MLVR-HB converter group 175
 7.3.2 Addition of four-quadrant power controllability 180
 7.3.3 DC link control structure 182
 7.3.4 Verification of reactive power control independence 183
 7.3.5 Control strategies 185
 7.4 Summary 195
References 196

8 Ultra High-Voltage Self-Commutating CSC Transmission 197
 8.1 Introduction 197
 8.2 MLCR-HVDC transmission 198
8.2.1 Dynamic model
8.2.2 Control structure

8.3 Simulated performance under normal operation
8.3.1 Response to active power changes
8.3.2 Response to reactive power changes

8.4 Simulated performance following disturbances
8.4.1 Response to an AC system fault
8.4.2 Response to a DC system fault

8.5 Provision of independent reactive power control
8.5.1 Steady state operation
8.5.2 Control structure
8.5.3 Dynamic simulation

8.6 Summary

References

9 Back-to-Back Asynchronous Interconnection
9.1 Introduction
9.2 Provision of independent reactive power control
9.3 MLCR back-to-back link
9.3.1 Determining the DC voltage operating limits
9.4 Control system design
9.5 Dynamic performance
9.5.1 Test system
9.5.2 Simulation verification
9.6 Waveform quality
9.7 Summary

References

10 Low Voltage High DC Current AC–DC Conversion
10.1 Introduction
10.2 Present high current rectification technology
10.2.1 Smelter potlines
10.2.2 Load profile
10.3 Hybrid double-group configuration
10.3.1 The control concept
10.3.2 Steady state analysis and waveforms
10.3.3 Control system
10.3.4 Simulated performance
10.4 Centre-tapped rectifier option
10.4.1 Current and power ratings
10.5 Two-quadrant MLCR rectification
10.5.1 AC system analysis
10.5.2 Component ratings
10.5.3 Multigroup MLCR rectifier
10.5.4 Controller design