Contents

List of Contributors xvii

1 Application of Nanocellulose for Controlled Drug Delivery 1
Laldhuhsanga Pachuau
1.1 Introduction 1
1.2 Biodegradability, Cytotoxicity, and Cellular Internalization of Nanocellulose 3
1.3 Nanocellulose in Nanoparticulate Drug Delivery 5
1.4 Nanocellulose in Microparticulate Drug Delivery 8
1.5 Nanocellulose in Tablet Formulations 10
1.6 Aerogel Systems 10
1.7 Hydrogels 11
1.8 Nanocellulose in Transdermal Drug Delivery 13
1.9 Conclusion 14
References 14

2 Bacterial Cellulose and Polyester Hydrogel Matrices in Biotechnology and Biomedicine: Current Status and Future Prospects 21
Rajnikant Borkar, Sanghratna S. Waghmare, and Tanvir Arfin
2.1 Introduction 21
2.2 Chemical Structure of Cellulose 21
2.3 Types of Cellulose 21
2.4 Bacterial Cellulose 22
2.5 Chemical Structure of BC 22
2.6 History of BC 23
2.7 Biosynthesis of Bacterial Cellulose 23
2.8 Properties 23
2.8.1 Biocompatibility 25
2.8.1.1 In Vitro Biocompatibility 25
2.8.1.2 In Vivo Biocompatibility 26
2.8.2 Hemocompatibility 26
2.8.3 Mechanical Properties 27
2.8.4 Microporosity 27
2.8.5 Biodegradability 28
2.9 Present Status of BC 28
2.10 Applications 29
 2.10.1 Drug Delivery 29
 2.10.2 Antibacterial/Antimicrobial Studies 29
 2.10.3 Biomedicine 30
 2.10.4 Wound Dressing 30
 2.10.5 Cardiovascular Implant 30
 2.10.6 Cartilage Meniscus Implant 31
 2.10.7 Bone Tissue Implant 31
 2.10.8 Other Biomedical Applications 31
 2.10.9 Artificial Cornea 32
 2.10.10 Biotechnology 32
2.11 Future Prospects 33
2.12 Polyester Hydrogels 33
2.13 Chemical Structure of Hydrogels 33
2.14 Types of Hydrogels 34
2.15 Properties of Hydrogels 34
 2.15.1 Swelling Properties 34
 2.15.2 Biodegradability 35
 2.15.3 Biocompatibility 36
2.16 Historical Background of Polyester Hydrogels 36
2.17 Recent Developments of Polyester Hydrogels 37
2.18 Applications of Polyester Hydrogels 38
 2.18.1 Drug Delivery 38
 2.18.2 Antibacterial/Antimicrobial Studies 38
 2.18.3 Biomedicine 38
 2.18.4 Biotechnology 39
 2.18.5 Tissue Engineering 39
2.19 Future Prospects 39
References 40

3 Bacterial Nanocellulose Applications for Tissue Engineering 47
Muhammed Lamin Sanyang, Naheed Saba, Mohammad Jawaid, Faruq Mohammad, and Mohd Sapuan Salit
3.1 Introduction 47
3.2 Cellulose 47
3.3 Nanocellulose and Its Types 50
 3.3.1 Cellulose Nanocrystals (CNCs) 50
 3.3.2 Cellulose Nanofibrils (CNFs) 52
 3.3.3 Bacterial Cellulose (BC) 52
3.4 Isolation and Preparation of Bacterial Cellulose 53
3.5 BC Properties for Tissue Engineering Applications 54
 3.5.1 Mechanical Properties of BC 54
 3.5.2 Surface Biochemistry Properties 55
 3.5.3 Biological Properties 56
 3.5.3.1 Biocompatibility 56
 3.5.3.2 Biodegradability In Vivo 57
Contents

3.6 Tissue Engineering Applications 58
3.7 Conclusion and Future Research 61
References 62

4 Cellulose-Based Nanohydrogels for Tissue Engineering Applications 67
Kalyani Prusty and Sarat K. Swain
4.1 Introduction 67
4.2 Preparation of Hydrogels/Cellulosic Hydrogels 69
4.3 Characterization of Hydrogels/Cellulosic Hydrogels 71
4.3.1 Fourier Transform Infrared Spectroscopy of Hydrogels/Cellulosic Hydrogels 71
4.3.2 Scanning Electron Microscopy of Hydrogels/Cellulosic Hydrogels 72
4.3.3 Nuclear Magnetic Resonance of Hydrogels 73
4.3.4 X-ray Diffraction (XRD) of Hydrogels 75
4.3.5 Transmission Electron Microscopy (TEM) of Hydrogels 76
4.4 Properties of Hydrogels 76
4.4.1 Swelling Properties of Hydrogels 76
4.4.2 Thermal Properties of Hydrogels 78
4.4.3 Rheological Properties of Hydrogels 79
4.4.4 Mechanical Properties of Hydrogels 80
4.5 Cellulose-Based Nanohydrogels for Tissue Engineering Applications 81
4.6 Concluding Remarks 84
Acknowledgment 85
References 85

5 Chitosan-Mediated Layer-by-Layer Assembling Approach for the Fabrication of Biomedical Probes and Advancement of Nanomedicine 91
Faruq Mohammad and Hamad A. Al-Lohedan
5.1 Introduction 91
5.2 Chitosan for Biofabrication 92
5.3 Derivatization of Chitosan 94
5.3.1 Derivatization by Direct Chemical Modification 94
5.3.2 Derivatization by Complex Formation 94
5.4 Chitosan-Mediated Biofabrication: Different Shapes and LBL Assembly 96
5.5 Chitosan-Mediated Assembly of Biomedical Probes and Devices 100
5.5.1 Biosensors 100
5.5.2 Biopharmaceuticals 102
5.5.3 Tissue Engineering Appliances 104
5.5.4 Implant Materials 106
5.5.5 Diagnostic Probes 107
5.5.6 Surgical Aids 108
5.6 Factors Influencing the Characteristics of Chitosan toward Biomedical Applications
5.6.1 Degree of Deacetylation (DD)
5.6.2 Degree of Quaternization (DQ)
5.6.3 Length and Type of Alkyl Chain
5.6.4 Solubility
5.6.5 pH
5.6.6 Molecular Weight (MW)
5.6.7 Substituent Charge
5.7 Summary and Conclusion
Acknowledgments
References

6 Hydrogels Based on Nanocellulose and Chitosane: Preparation, Characterization, and Properties
Meriem Fardioui, Abou el kacem Qaiss, and Rachid Bouhfid
6.1 Introduction
6.2 Polymeric Aerogels
6.2.1 Sol–Gel Process
6.2.1.1 Starch Gel by the Chemical Cross-linking Technique
6.2.1.2 Alginate Hydrogel by Ionic Interaction Technique
6.2.1.3 κ-Carrageenan Hydrogel by Heating/Cooling Technique
6.2.1.4 Cellulose Hydrogel by the Hydrogen-Bonding Technique
6.2.2 Gel Drying
6.2.2.1 Ambient Pressure Drying
6.2.2.2 Freeze-Drying
6.2.2.3 Supercritical Drying
6.3 Chitosan and Functionalized Chitosan Hydrogels
6.3.1 Chitosan Biopolymer
6.3.2 Chemical and Physical Cross-linked Chitosan Hydrogel
6.3.2.1 Physical Gel
6.3.2.1.1 Ionically Cross-linked Chitosan Hydrogel
6.3.2.2 Chemical Gels
6.3.3 Chitosan Hybrid Aerogels
6.4 Biopolymeric Aerogels in Biomedical Applications
References

7 Cellulose Nanocrystals and PEO/PET Hydrogel Material in Biotechnology and Biomedicine: Current Status and Future Prospects
Shoeb Athar, Rani Bushra, and Tanvir Arfin
7.1 Introduction
7.2 Cellulose Nanocrystals
7.2.1 Cellulose
7.2.2 Cellulose Nanocrystals (CNCs)
Contents

7.2.3 Why CNC? 142
 7.2.3.1 Mechanical Properties 142
 7.2.3.2 Surface Chemistry 142
 7.2.3.3 Biocompatibility 142
 7.2.3.4 In vivo Biodegradability 143
 7.2.3.5 Toxicity 143
7.2.4 CNC in Biotechnology and Biomedicine 143
 7.2.4.1 Biotechnology 143
 7.2.4.1.1 Tissue Engineering 143
 7.2.4.1.2 Enzyme or Protein Immobilization and Recognition 144
 7.2.4.2 Biomedicine 146
 7.2.4.2.1 Drug-Loaded System 146
 7.2.4.2.2 Medical Implants 148
 7.2.4.2.3 Cancer Targeting 150
 7.2.4.2.4 Antimicrobial Nanomaterials 151
7.2.5 Future Prospects 153
7.3 Polyethylene Oxide (PEO)/Polyethylene Terephthalate (PET) Hydrogel 155
 7.3.1 Hydrogel 155
 7.3.2 Classification 156
 7.3.3 Polyethylene Oxide (PEO)/Polyethylene Terephthalate (PET) 156
 7.3.4 PEO/PET Hydrogel in Biotechnology and Biomedicine 157
 7.3.4.1 Tissue Engineering 157
 7.3.4.1.2 Medical Devices and Biosensors 158
 7.3.4.2 Biomedicine 159
 7.3.4.2.1 Drug Delivery 159
 7.3.4.2.2 Medical Implants 159
 7.3.4.2.3 Wound Dressings 162
 7.3.5 Future Prospects 162
7.4 Conclusion 163
8 Conducting Polymer Hydrogels: Synthesis, Properties, and Applications for Biosensors 175
 Yu Zhao
 8.1 Introduction 175
 8.2 Synthesis and Processing of CPHs 177
 8.2.1 Conventional Synthetic Methods for CPHs 177
 8.2.2 Recently Developed Preparation Routes for CPHs 179
 8.3 CPHs for Electrochemical Biosensors 182
 8.3.1 Conducting Polymer-Based Biosensors 184
 8.3.2 Hydrogel-Based Biosensors 187
 8.3.3 Ionically Cross-linked Conducting Polymer Hydrogels and Their Applications in Biosensors 189
References 164
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.4</td>
<td>Doping Acid Cross-Linking as a Novel Method to Fabricate Conducting Polymer Hydrogels and Their Application in Biosensors</td>
<td>192</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusion</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>201</td>
</tr>
<tr>
<td>9</td>
<td>Nanocellulose and Nanogels as Modern Drug Delivery Systems</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Misu Moscovici, Cristina Hlevca, Angela Casarica, and Ramona-Daniela Pavaloiu</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>9.2</td>
<td>Nanoparticles as Drug Delivery Systems</td>
<td>210</td>
</tr>
<tr>
<td>9.2.1</td>
<td>State of the Art</td>
<td>210</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Challenges</td>
<td>212</td>
</tr>
<tr>
<td>9.3</td>
<td>Nanocelluloses</td>
<td>212</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Nanocellulose Structure, Preparation, and Properties</td>
<td>212</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Nanocellulose as Drug Delivery Carrier</td>
<td>215</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>Nanocellulose Drug Formulations for Topical Administration</td>
<td>215</td>
</tr>
<tr>
<td>9.3.2.1.1</td>
<td>Topical Application of Nanocomposites with Local Effect</td>
<td>215</td>
</tr>
<tr>
<td>9.3.2.1.2</td>
<td>Nanocellulose in Transdermal Drug Delivery Systems</td>
<td>217</td>
</tr>
<tr>
<td>9.3.2.2</td>
<td>Nanocellulose Formulations for Internal (Into-the-Body) Administration</td>
<td>219</td>
</tr>
<tr>
<td>9.3.2.2.1</td>
<td>Nanocellulose in Tablet Compression and Coating</td>
<td>221</td>
</tr>
<tr>
<td>9.3.2.2.2</td>
<td>Nanocellulose in Implants for Local Therapy</td>
<td>222</td>
</tr>
<tr>
<td>9.3.2.2.3</td>
<td>Biocompatibility and Toxicology</td>
<td>223</td>
</tr>
<tr>
<td>9.4</td>
<td>Nanogels</td>
<td>223</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Definition</td>
<td>223</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Characteristics</td>
<td>223</td>
</tr>
<tr>
<td>9.4.2.1</td>
<td>Swelling</td>
<td>223</td>
</tr>
<tr>
<td>9.4.2.2</td>
<td>Biocompatibility and Biodegradability</td>
<td>227</td>
</tr>
<tr>
<td>9.4.2.3</td>
<td>Drug Loading</td>
<td>227</td>
</tr>
<tr>
<td>9.4.2.4</td>
<td>Drug Release</td>
<td>229</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Stimuli-Responsive Nanogels</td>
<td>229</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Targetability</td>
<td>232</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Toxicity</td>
<td>234</td>
</tr>
<tr>
<td>9.4.6</td>
<td>Easy Synthesis of Nanogels</td>
<td>234</td>
</tr>
<tr>
<td>9.4.7</td>
<td>Nanogel Applications in Drug Delivery</td>
<td>236</td>
</tr>
<tr>
<td>9.4.7.1</td>
<td>Nanogel Delivery Systems for Cancer Therapy</td>
<td>236</td>
</tr>
<tr>
<td>9.4.7.1.1</td>
<td>Nanogel Carriers of More Than a Single Drug</td>
<td>240</td>
</tr>
<tr>
<td>9.4.7.2</td>
<td>Nanogels for Drug Delivery across Biological Barriers</td>
<td>242</td>
</tr>
<tr>
<td>9.4.7.3</td>
<td>Nanogels in Vaccine Delivery</td>
<td>247</td>
</tr>
<tr>
<td>9.4.7.4</td>
<td>Nanogels in Anti-inflammatory Drug Delivery</td>
<td>248</td>
</tr>
<tr>
<td>9.4.7.5</td>
<td>Nanogels in Treatment of Autoimmune Diseases</td>
<td>249</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions and Outlook</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>254</td>
</tr>
</tbody>
</table>
10 Recent Advances on Inhibitors of Apoptosis Proteins (IAP) Particularly with Reference to Patents 271

10.1 Introduction 271
10.1.1 Inhibitor of Apoptosis Proteins 271
10.1.2 IAPs and Cancer 273
10.1.2.1 XIAP 273
10.1.2.2 cIAPs 273
10.1.3 Mechanism of Action and Development of Smac Mimetics 273
10.1.3.1 Prudence Section 274
10.2 Patent Assessments 275
10.2.1 Fused Pyrrolidine as IAP Inhibitors 275
10.2.2 Fused Pyrazinone Derivatives 276
10.2.3 Indoles and Azaindoles 277
10.2.4 Dimeric Indoles 279
10.3 Other Heterocyclics as IAPs 279
10.3.1 Diazepine and Diazocine Derivatives as IAP Antagonists 281
10.3.2 Triazole-Containing Macrocycles as IAPs 281
10.3.3 Isoquinoline-Based IAP Antagonists 281
10.3.4 Dimeric and Pseudodimeric Peptidomimetics as IAPs 284
10.3.5 Pyrrolidine-Containing IAP Antagonists 285
10.3.6 Miscellaneous Structures as IAPs 286
10.4 Conclusion and Perspectives 288
Acknowledgments 290
References 290

11 Nanohydrogels: History, Development, and Applications in Drug Delivery 297
Muhammad Akram and Rafaqat Hussain

11.1 Introduction 297
11.2 History 297
11.2.1 First-Generation Hydrogels 298
11.2.2 Second-Generation Hydrogels 298
11.2.2.1 pH-Sensitive Hydrogels 298
11.2.2.2 Temperature-Responsive Hydrogels 300
11.2.3 Third-Generation Hydrogels 300
11.3 Classification of Hydrogels Based on the Type of Cross-Link Junctions 301
11.3.1 Physical Network-Based Hydrogels 302
11.3.2 Chemical Network-Based Hydrogels 303
11.3.3 Hydrogels Based on Ionic Interaction 304
11.3.4 Enzyme-Based Cross-Linking Hydrogels 304
11.3.5 Photosensitive Functional Group-Based Cross-Linked Hydrogels 305
11.4 Classification of Hydrogels Based on Properties 305
11.5 Classification of Interpenetrating Network Hydrogels 307
11.5.1 Homopolymeric Hydrogels 307
11.5.2 Copolymeric Hydrogel 307
11.5.3 Semi-interpenetrating Hydrogels 308
11.5.4 Interpenetrating Hydrogels 308
11.6 Classification Based on Source 309
11.7 Properties of Hydrogels 309
11.7.1 Swelling Properties 309
11.7.2 Elasticity of Hydrogels 310
11.7.3 Porosity and Permeation of Hydrogels 311
11.7.4 Mechanical Properties of Hydrogels 312
11.7.5 Biocompatibility of Hydrogels 312
11.7.6 Inhomogeneity of Hydrogels 312
11.8 Nanohydrogels and Their Applications 313
11.8.1 Polysaccharide-Based Nanohydrogels 314
11.8.1.1 Hyaluronic Acid-Based Nanohydrogels in Drug Delivery 315
11.8.1.2 Chitosan-Based Nanohydrogels in Drug Delivery 316
11.8.1.3 Alginate-Based Nanohydrogels in Drug Delivery 317
11.8.1.4 Pectin-Based Nanohydrogels in Drug Delivery 317
11.8.1.5 Dextran-Based Nanohydrogels in Drug Delivery 317
11.8.1.6 Cellulose-Based Nanohydrogels in Drug Delivery 317
11.9 Conclusion 319
References 319

12 Nanofibrillated Cellulose and Copoly(amino acid) Hydrogel Matrices in Biotechnology and Biomedicine 331
Azhar U. Khan, Nazia Malik, and Tanvir Arfin
12.1 History and Background of Celluloses 331
12.2 Structure of Cellulose 331
12.2.1 Characterization of Cellulose 332
12.2.2 Crystalline and Amorphous Regions 332
12.3 Nanocelluloses 333
12.3.1 Nanofibrillar Cellulose (NFC) 333
12.3.2 Production of NFC 334
12.3.2.1 Surface Modification of Nanofibrillated Cellulose 334
12.3.2.2 Coupling Agent 334
12.3.2.3 TEMPO-Mediated Oxidation Pretreatment 335
12.3.2.4 Other Chemical Methods 335
12.3.3 Biomedical Applications of NFC 336
12.3.3.1 Immunoassays and Diagnostics 336
12.3.3.2 Three-Dimensional (3D) Cell Cultures 337
12.3.3.3 Replacement of the Nucleus Pulposus 337
12.3.3.4 Controlled Drug Delivery 338
12.3.3.5 Wound Healing 338
12.3.4 Biotechnology Applications of NFC 339
12.3.4.1 Genetically Engineered Fusion 339
12.3.4.2 Immobilization–Stabilization 339
12.3.4.3 Cartilage Tissue Engineering 340
12.4 Hydrogels 340
12.4.1 Role of Swelling in Hydrogels 340
12.4.1.1 Sol–Gel Transition in Hydrogels 341
12.4.1.2 Classification of Hydrogel Products 341
12.4.1.3 Hydrogel Technical Features 341
12.4.2 Preparation of Poly(amino acids) 342
12.4.3 Biomedical Application of Hydrogels 344
12.4.3.1 Treatment of Hepatoma 344
12.4.3.2 Drug Delivery 345
12.4.3.3 Anticancer Drug 345
12.4.4 Biotechnology Applications of Hydrogels 346
12.4.4.1 Genetic Engineering 346
12.4.4.2 Amyloidogenicity Code 346
12.4.4.3 Antibodies 346
12.5 Conclusion 347
References 347

Index 353