Index

a
ablative laser processing 635
abrasive material 750
accelerated stress test 212
acrylate-based UV inkjet ink formulations 136
acrylate monomers 136, 653
acrylic acid copolymers (ASE) 190
active-matrix (AM)
– organic light-emitting diode 232
– technologies 651
acrylphosphine oxides 64, 71, 120
– photoinitiators 73, 85
additive manufacturing (AMs) 7, 650, 865
– key strengths 650
– technologies 649
additives 201
adhesion 209, 653
– ink 784
– poor 484
– technologies 380
– valuation of 211
aerosol cans 737
aerospace 649
Afinia L801 desktop label printer 344
agglomeration 199
agility 650
AGS Turbiscan 35
air-cooled light sources 536
aircraft 654
air flow
– cross-flow to filter out dots 315
– speed 572
AirProducts 167
aliphatic acrylates 135
amines 85
– coinitiators 85
– modified oligomers 86
amino alkyl radical cation 78
α-aminoketone 69, 83
– derivatives 70
– photoinitiators 70
amorphous solid 376
amphiphilic character 137
AMs. see additive manufacturing (AMs)
anionic chemical dispersion systems 185
Annovi, Alberto 4
anthraquinone 182
antireflection (AR) 400
AOI. see area of interest (AOI)
aplication
– development 581
– line printing 19
– printed antennae 5, 18
– printed batteries 18
aqueous dispersions 108
aqueous ink system 25, 55, 152, 163, 781
– dynamic surface tension response 164
– latex ink, formulation of 164
– pigment inks 172, 173
– UV inks 172
area of interest (AOI) 449
ArrayJet microarrayer 676
Arrhenius equation 562
arylglyoxylate ester photoinitiators 77
aryl iodonium salts, exposure to UV
– radiation 131
aryl sulfonium 131
aseptic filling/sterilization 811
ashing 524
assembled film battery 19
ASTM Standards 381
atmospheric plasma 515
atomizer 762
automotive
– maintenance systems 275
– and motorcycle industry 737
– presses 762
azo/diazod class disperse dyes 182
back-to-back printheads 256
Bakelite resin 747
ball mills 196
bank card reader 629
basic web lead module 844
batch processing 198
batch-to-batch consistency 139
bell/waterfall method 763
2,2’,2’-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TBPi) 235
benzophenone photoinitiators 81
Bernoulli’s principle 824
biaxially oriented polypropylene (BOPP) 801
bidirectional printing 790
big volumes model 4, 5
bimolecular reaction mechanism 80
binders 200
biodegradable biomaterials 661
biofabrication 674
bioinformatics 674
biopatterning 661
bioprinting 661, 674
– inkjet-based 662
bisacylphosphine oxide (BAPO) 70, 71, 73
– photoinitiators 73
4,4’-bis(N,N-dialkylamino) benzophenones 122
bisque firing 763
bit-map data 220
black inkjet 136
black pigments 167
bleached chemical wood fiber 749
bleeding effects 174
Blue Wool Scale 136
board printing JUPITER JPT-C-2100 828
boiling point 563
bonding agent (BA) 465, 466
bovine serum albumin 666
brittleness 405
building integrated PV (BIPV) 639
built-in camera detection system 746
bulk factor 208
bulk ink properties 414
butt join stitch 792
Caber Apparatus 419
CAD data 220
CAD files 635, 655
cadmium selenide (CdSe) system 234
cadmium sulfide (CdS) 641
cadmium telluride (CdTe) 639
– semiconductor junction 641
cake of unsintered powder 655
calcium carbonate 368
calibration, of inkjet press 693
camera-based inspection system 773
Canon FPA-1100 NZ2 single module 855
Canon Océ Colorwave 910 346
capability targets 303
capacitance 559, 637
– to digital converter 626
– sensors 637, 823
–– humidity 627
capital-intensive development 736
caprolactam 654
cartridges 758
case study
– HP Page-wide array 326
–– application areas 331
–– drop formation process 329
–– printhead design 327
–– specifics of TIJ technology 326
– hybrid aqueous–UV 48
–– head design comparisons 49
–– influence of waveform 51
–– ink concept comparisons 49
–– ink recirculation 51
–– latency, head interactions 49
–– managing nozzle health 53
–– print process factors 56
–– substrate/ink comparisons 55
–– sustainability, head interactions 54
cationic
– inks
–– free radical, performance comparison 131
–– inkjet 131
– photoinitiator 131
– pigments 368
– polymerization 131
CDF, see cumulative distribution function (CDF)
cellulose
– based substrates 166
– cellulosic fibers 363, 364
– polyester blend 191
CEN Standards 381
center-to-edge temperature deviation 574
centrifugal glazing 763
ceramic effect 768, 782
ceramic inkjet inks 136, 151, 154, 159, 160, 772–775
– characteristics 152
– color/effect 156
Index 879

- and consumption 767
- density 156
- digital decoration 767
- ceramic 151
- filtration time 156
- firing cycle 151
- glaze/ink interaction 157
- industrial ceramic tile manufacturing 151
- interaction
 - before firing 157
 - during firing 158
 - liquid fraction 152
- manufacturing cost chart 768
- pigments 153, 763, 767
- printing 157
- properties 154, 767
- safety considerations 160
- saturation point curve 159
- shelf life 8, 156
- solid fraction 153
- storage 156
- surface tension 156
- viscosity 155
ceramic laminate 764
ceramic market 154
ceramic materials 564
ceramics printing 766
ceramic tiles 4, 5, 780
- batching 761
- body composition 761
- decoration 773
- requirements 761
- design 765
- digital decoration for 766
- drop trajectories in 766
- drying 762
- firing 763
- forming 762
- glazing 763, 770
- humidity of 769
- industry 4
- inkjet printing of 765
- manufacture 5, 761
- challenge for 5
- process 761, 762
- mixing/grinding 761
- printing 765
- raw materials used in 761
- single-pass inkjet printer design for 772
- electronics and print engine 777
- frame and color bars 772
- ink distribution system (IDS) 775
- maintenance procedure devices 780
- printheads 773
- RIP/color management software 778
- spray drying 762
- typology, sizes and glazing line speed 763
- unglazed 764
- channel walls 264
- charge electrodes 314
- charge plates 315
- charges-coupled device (CCD) 402
- camera 439
- chemical compatibility 493
- test kits 475
- chemical composition 381
- chemical dispersion systems 185
- chemical incompatibility 474, 475
- chemical primer solutions 380
- chemical reduction 216
- chemical resistance 381
- of polymers 382
- chemical treatments 380
- Chevron actuator 289
- Chevron architecture 289
- Chevron design 288
- chips 340
- chlorobenzene 230, 233
- spin coating solution 231
- chlorotriazine functionality 166
- chondrocyte 667
- chromatic development 158
- CIELAB space 694
- CIJ. see continuous inkjet (CIJ) classification, labeling, and packaging (CLP) 161
- clays 157
- cleaning glass surfaces, treatment methods for 400
- cleaning procedure, conditions for finding suitable 399
- Clevios™ AI 4083 233
- clocking bottle transport 805
- closed-loop system 825
- cloth touching 480
- CMYK. see cyan, magenta, yellow, and black (CMYK)
- coalescence, acceptable/unacceptable 169
- coatings 200
- chemical primer 380
- material, chemical composition 186
- paper 368
- surface liquid absorbency 186
- types 368
- cockle 169
coding 141
Index

880

coefficient of thermal expansion (CTEs) 212

collapsible tubes 737
colorants 749, 753
– for black inkjet inks 167
– inkjet inks with pigments 172

Colordyne CD3600 Laser Pro label press 345
colors
– aqueous 167
– balancing 825
– bars 772
– durability 142
– fastness 5
– gamut 142
– ink 168
– intensity 767
– management 188, 828
– software 828
– matching process 819
– pigments 167
– printing stage 743
– registration 488
– reproduction 186
– saturation 153
– science 752
– sensation 752
– unacceptable/acceptable bleed 168
combinatorial techniques 674

COMET ebeam Technologies (Comet EBT) 551, 554
commercialization
– available inkjet label press (see grapium)
– bioprinting technologies 669
– challenges 631
compact/thin chassis design 267
compatibility test 493
complementary metal-oxide semiconductor (CMOS) 232, 354, 402
complex digital converting system 735
complex label designs, easing production of 726
– banner printing 727
– combining power of digital with versatility of flexo 726
– fit-for-purpose 726
– substrate choice 726
– variable data 727
complex rheology
– continuous inkjet (CIJ) 425
– drop-on-demand inks 428
– during ink formulations, additives to optimize 423
– with jetting behavior 425
component K 492, 498
– rendered and adapted version 499
comparative fluid dynamics (CFD) 592
computer-aided design template 322
conduction 569
conductivities 8, 493, 561, 562
– inks 196
– surface treatment, droplet size effect of 219
– polymers 318
cone screw 278
confocal/interferometric microscopy 205
contact angle
– in dependence on surface conditions 398
– for water on some typical polymers 380
– and wetting behavior, relationship 379
contaminants 143, 528, 657
– ambient control 577
– control 576
– gas tight design, of the drying oven 576
– proper refreshment 576
– sealing of insulation materials 576
– suitable web support 576
– void defect 858
– web transport through oven 577
continuous inkjet (CIJ) 11, 25, 141, 313, 316, 841
– binary charge deflection 314
– device of thermal stimulation type 354
– inkjet printing behavior 426
– Kodak Stream technology 351
– principle of operation 351
– scalable technology 354
– printing 662
– print system specifications 842
– process 314, 351, 356
– binary charge deflection 314
– weaknesses 314
continuous liquid interface projection (CLIP) 659
continuous pressed laminates (CPL) 751
continuous single-pass printing 824
controlling layer thickness 16
conventional
– bulb dryer 731
– inkjet systems 856
– labeling machines 801
– photolithography 851, 852, 863
– printing
– finishing methods, advantages/disadvantages 733
– machine 807
– processes 742
– vs. digital printing 733
tube manufacturing line 738
conversion efficiencies 493
converting processes 689
– CMYK process printing 692
– gamut 696
– by market sector 709
– Pantone system 695
– primer 690
– printing with high opacity white ink 691
– spot color printing and emulation 694
– unwinding/rewinding 689
– web cleaning and corona treatment 689
conveying 811
conveyors 743
cooldown 574
copolymerization 377
copper indium gallium diselenide (CIGS) 639
– solar cells 646
copper oxide particles 563
corona 17, 484, 515
– system, with discharge in operation 519
– treatment 689, 690
– device 484
– module 516
corrosion 533
cotton
– for printing 170
– reactive dye printing 169
couplings 476
critical micelle concentration (cmc) 168
critical surface tension 379
– for water on some typical polymers 380
cross media 835
crossover digital, flexo, and digital hybrid 698
cross-process direction, imaging models 590
CrystalPoint 30
CSG pty 258
cumulative density functions 452
cumulative distribution function (CDF) 452
cure delay 139
Curie temperature 287
custom digital machine vision systems 465
customer requirements, software, and user concept 814
cyan, magenta, yellow, and black (CMYK) 185
– data 692
– pigment inks 357
– printing 693, 743
Cycle4Green (C4G) 687
cylindrical packaging decoration 744
cylindrical screen printing process 15
d
data handling, in industrial inkjet printing 465
2D barcodes 835
DBP. see double-belt press (DBP)
decoration
– decorative paper, printing on 748
– decorative plastic laminates 747
– designs 801
– process 5
décor industry 825
décor inks 754
décor paper 747, 748, 750, 752, 819, 828
– characteristics of 748
– impregnation of 755
– with inkjet primer 751
– cons 751
– pros 751
– printing 750
– history of 747
– for inkjet 750
décor printing
– inkjet 752
– inks for, selection criteria 753
– printheads for, selection criteria 753
– paper drying in 755
– print houses 748
– technical description, with inkjet printing 748
décor storage 820
D300e direct digital dispensing system 675
3D effect 5
deflection plates 315
Delta E 753
demagnification 446
demagnifying telecentric optic 446
dendrimers 96
density correction 793
desktop applications 25
desktop printing 163
development cost 789
3D hydrogel structures 322
Diamtix recirculation systems 166
dielectric barrier discharge (DBD) 515
dielectric constants 386
diethylamino-substituted benzophenone derivative 82, 105
diethyl phthalate (DEP) 423
2,4-diethylthioxanthone (DETX) 70
diffusion-hindered photoinitiators 146
diffusive wave spectrometer (DWS) 418
difunctional α-hydroxyketone photoinitiators 106
difunctional photoinitiator 84
Index

digital decoration 765, 770, 782
digital documents 650
digital fabrication process 820
digital files 646, 650, 655
digital glazing 782, 784
digital hybrid, advantage of 697
 – cold stamp foil 700
 – inline flood coat and spot varnish 698
 – – lamination 700
 – metallic process 701
 – peel and reveal 700
 – spot colors and specialist inks 701
digital inkjet printing 645, 800
 – label 147
digital inks 772, 782
digital prepress processes 736
digital printers 744, 771, 782, 817, 822, 828
 – Hymmen’s JUPITER line 818
 – inkjet 180
digital printing 146, 693, 801, 833, 840
 – conditions affecting 734
 – disadvantages 734
 – of labels 683
 – machine 737
 – technology 820, 839
 – unit 731
 – UV inkjet print engine 732
digital production technology 830
digital techniques 8, 801
digital working principle 489
Dimatix 26
 – inkjet printer 605
 – Q-class 54
4-dimethylamino-substituted derivatives 70
dimethyl benzil ketal 66, 69
3D inkjet printing
 – direct 651
 – in life sciences 661
diode-pumped solid-state laser 641
direct printing 180, 802, 817
direct product decoration printing 265
direct-to-garment (DTG) 179
direct-to-shape
 – digital motivation 800
 – full height printing of shape 793
 – printing 141, 799
 – – digital 816
discing 763
dispersants 195, 199, 201
disperse dyes 170, 182
 – inkjet inks 179
Disperse Red 60 183
dispersions 197
 disruptive innovations 800
dithiocarbamate photoinitiators 59
2D linearization/density correction 794
2D molten area 655
DMP-2800 603
DoD. see drop-on-demand (DoD)
Dolcevita 745
Doppler setup
 – on microdrop jetting device 441
Doppler-shifted laser beam 441
double-belt press (DBP) 751, 817
double ITO (DITO) design 637
double printing 792
d31 piezoelectric constant 247
3D printers 652
 2D printing 650
3D printing 650, 851
3D product decoration 262
drawer loading door, ideal for glovebox integration 523
draw-release-reinforce (DRR) 292
 – timing 293
dried ink evaluation 36
 – adhesion 36
 – color 36
 – fluid resistance, compatibility 37
 – mechanical resistance 37
 – weathering and other stress tests 37
drive per nozzle (DPN) technology 280, 281, 795
droplet diameter 495
droplet generation 229, 318, 448
 – dimensionless parameters used to model 665
 – and ejection 663
 – high-resolution 446
droplet size 498
droplet speeds 483
droplet velocity 446, 447
drop-on-demand (DoD) 151, 184, 352, 355, 411, 841
 – frequency 439
 – inkjet dispensing technologies 663
 – inkjet inks 186
 – inkjet printing
 – – behavior 427
 – – methods 663
drop-per-dot (dpd) 453
drops
 – ejection process 319
 – formation process 26, 41, 55, 434
 – jetting, effect of 596
 – laydown strategy 791
placement 585
 – error 584, 585, 588
 – repeatability 858
 – strategy 794
– poor formation
 – acoustic sensing 14, 435
 – air bubbles 435
 – capacitive sensing 436
 – failure origins 432
 – feedforward control 441
 – impedance spectroscopy 437
 – ink layer 434
 – in-line and off-line detection of 431
 – meniscus consistency 432
 – monitoring droplet formation 438
 – nozzleplate wetting 433
 – pinch-off 435
 – satellite drops 434
 – shape analyzer 512
 – size 52, 583
 – requirement 583
 – surface interaction 56
 – visualization
 – frequency dependence 41
 – in practice 39
 – systems 40
 – velocity determination 40, 595
 – waveform basics 40
DR pulse duration 293
Drupa 2008 26
drying oven 568
 – air flow system 568
 – convective 19, 567
 – heating system 568
 – horizontal
 – hunch back transport 568
 – straight transport 568
 – internal ambient control 568
 – oven tunnel 568
 – refreshment system 568
 – U-shape horizontal web transport 568
 – vertical web transport 569
 – web support 568
drying process 19, 47, 567, 569
 – convective 19, 569
 – curing/sintering 570
 – electron beam (EB) 544
 – etching 524
 – evaporation 569
 – glazing 763
 – grinding 762
 – heat thermofixing process 171
 – spray 762
 – stage, water removal 175
DST measurements 34
3D Systems 653
D 263T eco glass 402
dual-beam laser interferometer (DBLI) 303
Du Noüy principle 33
duroplastic resins 751
Durst 26
dye diffusion thermal transfer (D2T2) 179
dyeing polyester 170
dyes 167, 184
 – aqueous inks 168, 170–172
 – background 171
 – as colorants 167
 – direct print process 171
 – disperse 170
 – drop-on-demand desktop systems 167
 – process 168, 170
 – reactive 169
 – sublimation 172
 – inks 166, 170, 181
 – aligns 171
 – molecules 191
 – particle stability, ink carrier system 184
 – sublimation digital imaging, reliable colorant
development 191
 – sublimation inkjet inks 180, 181, 184,
 186, 190
 – advantages of imaging 181
 – color considerations 187
 – development opportunities 191
 – engineering aspects 188
 – printing 187, 188
 – sublimation colorants in digital
 imaging 182
 – transfer media/substrate 184
 – sublimation transfer printing
 mechanism 183
dynamic compensation techniques 589
dynamic contact angle 45
dynamic ink properties 414
 – surface tension 414
 – viscoelasticity 415
dynamic nozzle failure 825
dynamic scanning calorimetry (DSC) 35
dynamic surface mapping 797
dynamic surface tension 33
Dyne test 690

e
EB. see electron beam (EB)
ebeam inkjet dryer (EID) 553
Index

- prototype 553, 554
ebeam lamps 550
- new generation 553
ecological goals 800
economically bottler needs 800
economically market needs 800
dge banding 748
effects inks 782
elasticity 377
elastomeric polymers 657
elastomers 377, 657
electrical conductivity 208
electrical conductor 209
electrical impulse 201
electrical resistance 461
electric conductivity 416
-electrodes
 - material, 3D view 19
 - printed on current collector 19
-electromagnetic spectrum
 - UVB and UVA range 64
 - UV region 118
electromigration 212
electron accelerator 550
electron beam (EB) 130, 543
 - advantages of 544
 - classic processor 550
 - pumped 551
 - cross-linking 543
 - curable liquid media 545
 - curing 543
 - drying 544
 - enhances product qualities 544
 - processes 547
 - formulations 545, 546
 - for inkjet applications 553
 - lithography 854
 - operating parameters 547
 - dose 547, 548
 - energy consumption 549
 - inverting 549
 - operation and maintenance 548
 - penetration of energetic electrons 547
 - safety and shielding 549
 - processor 551
 - sterilizing 543
 - UV curing, differences between 545
electron beam curing (EBC) 545
electron beam melting (EBM) 659
electronically align nozzles 466
electronic circuit printing 851
electron penetration 548
electron processing system 550
electron transfer layer (ETL) 611, 614
electrostatic inkjetting 319
-electrostatic mechanism 313
Emerald QE 244
-EMI/RFI remediation 319
-emission spectrum
 - UV-A 533
 - UV-B and UV-C 534
 - UV LED 535
E modulus 385
-emulsion polymers 175
-encoder system design 741
-end-shooters 478
-energy consumption 642
-energy density 123
 - photometric evaluation 127
-energy-efficient equipment 193
-environmental conditions 381, 636, 653
epoxy molding compound (EMC) 630
-Epson 301
-EPS/PDF file 738
-error compensation 584
-erythritol acrylates 135
-esters 152
-estimated time to failure (ETF) 316
-ethylene glycol 228
-ethylene/propylene glycol acrylates 135
-EuPIA 145
-EUV, see extreme ultraviolet (EUV)
evaporated metal double four-point measuring
 probe 460
-evaporation 567
-exposure time 448
-extensional rheometers 418
-extreme ultraviolet (EUV) 852
 - lithography systems 855
-eye irritation 138

f
-fabrication technology 354
 - OLED devices 613
-feature shearing defect 858
-feature size 493
-feedback controls 442
-feedback encoders 483
-feldspars 157, 761
-FFEI Graphium 692
-filament break-up process 418
-filament stretching techniques 419
-filament thinning 420
-filling 811
-film-assisted molding (FAM) 622, 630
-film coatings 369
film manufacturing 377
− casting/extrusion processes 377
− surface tension 13, 378
− modification 378
filters 476
firing chambers 155
firing cycle 154
firing process 157
flame-retardant materials 658
flame spray pyrolysis (FSP) 197
flame treatment 516
flash lamp systems 559
flatbed cylinder screen printing process 14
flatbed screen printing process, principle and nomenclature 13
flexographic printing 631
− units 735
flexography 7, 8
Flexo UV ink 697
FlexSmell
− label, functional inkjet-printed 610
− schematic design 609
flex to install 212
floating wood tiles 817
floor tiles 763
− production 768
fluid flow
− behavior 8
− compatibility, wider 25
− flow reaction technology 198
− rate 476
fluid–gaseous interphase 202
fluid measurements, overview 33
− other properties 35
− particle size 33
− sedimentation 34
− surface tension 33
− viscosity 33
fluid viscosity 476
fluorescent polymers 225
fluorine-doped tin oxide (FTO) 641
fluoropolymers 373
food packaging 25
− applications 84, 93, 147
− legislation 94
− migration mechanisms 143
− printing 142
food safety 142
− packaging printing 143
− of printed package 144
footwear industry 658
forced flow system 823
formulations 546
fossil fuels 323, 639
FOTURAN® glasses 405
fourth industrial revolution 815
frame design for minimization of UV stray light 542
free-flowing powder 762
frits 157
Fromm Z parameter 665
FujiFilm 26
FUJIFILM Dimatix, Inc. 241, 246, 248, 581, 582, 589, 590, 592
− DMP-5000 floor 672
− DMP series printers 671
− − materials 671
− − printhead geometry 242
− − Samba G3L 189
− − by VersaDrop 243
full-width at half-maximum (FWHM) 104
functional inks 210, 662
− − formulation 204
− − inkjet 212
− − printing 7, 489
g
gallium-doped medium-pressure mercury lamp
− emission spectrum 121
gallium halides 120
Gallus DCS 340 with predigital flexo unit 692
Gallus ECS340 731
Gallus Labelfire
− digital print engine
− − inkjet printhead 732
− − Gallus Labelfire 340 731
− − digital print unit 732
− − technical performance 733
gaming application, in BILD tabloid 834
gas evaporation 216
gasoline 318
gas permeability 380
gastrointestinal tract 87
Gaussian beam (GB) 860
Gaussian-like weight distribution 94
generative manufacturing 7
ghost droplets 454
Gibb’s free energy 323
glass
− ceramic 404
− composition 395
− contact angle
− − determination 397
− − 46° of noncleaned glass surface 397
− − 108° on hydrophobic glass surface 397
− down-draw process 394
− enhanced glass strength 395
− formats 395
− fractions 157
− frame mounting 406
− free-standing 406
− geometrical properties 395
− laser drilled 406
− manufacturing process 392, 395
− − conventional technology 393
− − melt diagram for 392
− − thin glass technology 393
− material 401
− − AF 32[®] Eco Thin Glass 402
− − B 270[®] I Ultrawhite Glass 404
− − D 263[®] T Eco Thin Glass 402
− − MEM pax[®] 402
− − optical glass 401
− − photosensitive 405
− − physical/chemical properties 393
− − selections, properties 395
− − substrates, structuring 405
− − surface properties 396
− − surface treatments 396
− − cleaning and coating for touchscreen application 400
− − methods to clean 398
− − quality, determination of 396
− − transition temperature 376, 377, 854
− − types
− − − main characteristics 391
− − − properties of 403
− − as universal material 391
− − up-draw process 394
− glaziers 5
− glazes
− − achieving 159
− − characteristics 158
− − composition 158
− − ink interactions 767
− − same inks for different 159
− global inkjet systems 796
− globally harmonized system (GHS) 161
− glost firing 763
− glycerin 229
− glycerol 165
− glycols 152
− − aldehyde 197
− GMP principles 145, 146
− gold nanoparticles 617
− granulation 762
− graphical printing method 364, 601
− − décor printing 8
− graphic software 746
− graphics printing 766
− graphium 23, 720
− − design, coupled with Fujifilm’s UV ink 721
− − digital hybrid label press 23, 723, 724
− − FFEI Ltd 723
− − flexibility with 721
− − productivity 723
− − − automated cleaning 724
− − − finishing 725
− − − manipulation of the crossover 724
− − − modular 724
− − − print bar 725
− − − wide web width 724
− − − workflow 725
− − unique capability of integrating optional flexo stations for 720
− gravure 8
− − printing 609, 818
− gray component replacement (GCR) 719
− grayscale capable 257
− grayscale printing 497
− green bodies 773
− gutter 315

h
− Hagen–Poiseuille equation 320
− Hahn–Schickard works 632
− hardware
− − driving arrangement 50
− − LEL alarm 574
− − safety 574
− Harima’s Ag nanoparticle conductive ink (NPS-JL) 218, 221
− HDNA. see high-density nozzle architecture (HDNA)
− HD plates 686
− head
− − alignment 587
− − maintenance system 480
− − position error 586
− health care 649
− heating equipment/method 181, 190
− heat-sensitive anchoring side 191
− height profile of the edge of the electrode 19
− Hewlett Packard 657
− hexamethylbisimidazol (HABI) derivative 77
− high-density fiber 818
− high-density nozzle architecture (HDNA) 321
− − design options 331
− − firing chambers and nozzles 328
− − printhead 329
− high-frequency
- rheology 428
 - rheometers 417
high-pressure laminate (HPL) 747, 751
 - decorative 751
 - for high-resistant surfaces 748
high-speed camera setup
 - at normal viewing angle 593
 - at side viewing angle 593
high-speed in-flight jetting photographs 412
high-speed sintering (HSS)
 - approach 656
 - machine 655
 - working 656
 - parts made by 658
 - potential applications for 658
 - process 654
high-speed video, particle tracking 593
high standoff printing 591
high-volume printing 478, 833
histogram changes 451
histogram matching 452
hole injection layer (HIL) 613
homolytic cleavage reaction 66
hot melt
 - applications 241
 - inks 30
 - transfer media 187
HP DeskjetTM thermal inkjet printer 667
 HPL. see high-pressure laminate (HPL)
HP Latex platform 26
HP T300 Color Inkjet Web Press 465–467
HSS. see high-speed sintering (HSS)
humidity 396
hybrid
 - approach, benefit of 636
 - aqueous UV inks 172
 - inkjet ink systems 186
 - label printing system 731
 - laser/inkjet processing 643
 - machine 635
 - model 698
 - OSI process 642
 - printing system 708, 734
 - - challenges 734
 - - processing 5, 11, 21, 635, 636, 642, 646
 - - system 697
 - - production, managing 727
 - - UV inks 132
hydraulic path 476
hydrogen abstraction 80
hydrophobically modified acrylic acid copolymers (HASE) 190
hydrophobically modified polyurethanes (HEUR) 190
hydrophobic synthetic polymeric materials 181
1-hydroxy-cyclohexyl-phenyl-ketone 67
α-hydroxyketones 66, 68
 - derivative 100
 - photoinitiator 64, 109
hydroxyl-containing fiber materials 191
Hyvmen 817
 - approach, JUPITER digital printing line 821
 - inkjet technology, chronological development 821
 - JUPITER machines 825
 - - technical challenges 825
 - printer, additional features 831
 - - software 825

i
 identification (ID)
 - IDTechEx 7
 - protection 232
IIJ. see industrial Inkjet (IIJ)
iLIF setup 440
image quality 355
 - color gamut 356
 - dot size and resolution 355
 - image registration and artifact detection 356
 - poor 484
Imagexpert 438
imaging models 589
immersion lithography 851
 - quad-patterning 864
Imperial Chemical Industries (ICI) 179
impregnated paper 819
impregnation resin 750
imprinted patterns, SEM images 866
imprinting fluid 851
impurity control 190
Inca Digital 26
indium phosphide (InP) 234
indium tin oxide (ITO) 611, 637
 - coatings 607
 - - glass, IJ ink confinement 644
 - - substrates 226, 638
 - - precursors 318
 - - used in touch sensors 637
individualization 833
inductance 559
industrial application requirements 241
 - general purpose 250
 - high-performance graphics 249
 - legacy general purpose 251
Index

- legacy products 241
- MEMS technology 242
- nonwetting coatings 247
- Q-Class family 243
- RediJet jetting technology 244
- Samba printheads 10, 246
- sputtered Nb-PZT film 247
- StarFireSG1024/A 10, 246
- StarFireTM SG1024/C 245
- VersaDrop jetting technology 242

industrial digital printing 817

industrial inkjet (IIJ) 737

industrial printing 7

- applications 136
- production technology 817

industrial-size vacuum plasma system 522

Industry 4.0 815

- and direct print 815
- within the KHS 816

in-flight drops 415

infrared absorbing ink 655

injection molding 649

ink distribution system (IDS) 775, 783

inkjet printing (IJP) 601

- direct-write laser processing, comparison of 636
- drop-on-demand 315
- to enable selective sintering 654
- fundamentals of 313

- of labels 683
- - 2000 Barco Dotrix 683
- - Drupa 2016 684
- - Label Expo 2007 683
- - Label Expo 2015, hybrid concepts 683
- - Label Expo 2016 684
- - machine 757
- - of osteochondral material 668
- - and reaction 651
- - station 740
- - technologies 841
- - companies role in developing 675
- - selection 841

- unit 503

inkjetting 16, 490

- advantage 707
- approach 656
- - to sintering 657
- - biofabrication 669
- - bioprinting 666, 669
- - from lab to fab—scaling 671
- - technologies, commercial 669
- - chamber architecture 318
- - coated décor paper 750
- - colors 750
- - in custom and surface manufacturing 322
- - décor paper, in paper manufacturing process 751
- - cons 751
- - pros 751
- - dispenser 854
- - drug discovery 674–677
- - EB inks 555
- - firing 166
- - timescale 165
- - fluid 200
- - shear viscosities 417
- - formulations 231
- - head 840
- - imprint 848
- - accuracy 845
- - positioning 848
- - industry 824
- - additive manufacturing, future perspective 652, 659
- - 3D printing, future perspective 21, 659
- - inks 131, 139, 195, 413, 750
- - droplets with a (porous) substrate surface, interaction of 366
- - manufacturing process 767
- - performance 136
- - lab printing machine 757
- - machine for décor printing 757, 758
– nozzles 269, 437
– other forms of 319
– for other processes 321
– overview of 11, 313
– papers 750, 754
– cons 751
– pros 750
– primer 751
– printheads 635, 739
– operates 416
– technology 662
– printing 5, 141, 225, 226, 489, 506, 606, 613, 644, 653, 655, 748, 750, 756, 768–772, 787, 788, 845
– adhesion of 620
– of antenna structures 630
– boards 756
– challenges 612, 769
– combined with photonic curing 561
– conductive silver tracks, white light interferometer measurement 618
– droplets on liquid-crystal polymer film 220
– IDCs 626
– machines 787
– metal lines 617
– silver line 621
– silver structures, fluid-level sensor demonstrator 628
– silver tracks 624
– on PI 618
– temperature sensor structure on PET+PBT 624
– tile 770
– tracks 619
– UV-curing acryl-based insulator 628
– pros and cons 5
– reliability, quantitative assessment 445
– analysis algorithm 448–456
– computing time 456
– droplet presence analysis 454
– histogram matching 451
– idea and experimental setup 446
– low contrast optimization 451
– preflight techniques, summary 453
– robustness to nozzle position variation 450
– theoretical considerations 447
– single-pass printer 763
– system 656, 657
– design considerations 854–862
– technology 3, 489, 490, 649, 650, 737, 787, 851
– cons of 4
– important aspects of 492
– into industry 4
– in lithographic patterning 851
– potential user 3
– pros of 3
– vs. screen printing, direct comparison 12
inks 811
– borne contaminants 445
– characterization methods 31
– combined bulk properties 414
– contact angles 248
– delivery systems 753
– density 583
– droplet ejection 440
– feed ejection 270
– filled channel
– acoustic response 298
– flow behavior 413
– flux 320
– food safety and sustainability 812
– migration 812
– recyclability 813
– formulation 131, 136
– glaze contact surface 157
– ink behavior 56
– ink interactions 47
– methacrylate/allyl and vinyl groups 134
– particle size 367
– performance 163
– physical fingerprint 423
– printing 183
– production
– pigments used for 767
– properties 9
– acrylate functionality 135
– receiving layer 129
– receptive additives 751
– recirculation system 733
– rheology 218
– robustness and appearance 811
– solid fraction density 156
– stability 268
– substrates 358
– ISO-certified program tests available papers 359
– OEM aqueous pigment ink formulations 358
– pairings 496
– supply system 743
– system
– air removal from printhead 273
– design 739
– technology 26, 48, 357
– aqueous 27
index

-- choosing an ink type 31
-- Energy-Curable 30
-- Hot melt 30
-- hybrids 31
-- oil 29
-- solvent 28
-- type selection 754
-- viscosity 155
-- wetting improvement 46
inline
-- digital printing
-- label printing systems 731
-- in newspapers, requirements 840
-- resistance 459
-- typical machine configuration 399
InPrint 7
input controller 828
insulated junction bipolar transistor (IGBT) 559
integration
-- CMOS-MEMS processing 354
-- digital converting system 735
-- digital printing system 840
-- inkjet components, in newspaper press 843
-- inkjet interface 847
-- inkjet workflow – register process 847
-- integrated circuit (IC) 206
-- successful creating 714
-- ability to print flat vibrant colors 718
-- factors to consider when selecting printhead 714
-- gray levels and resolutions 716
-- highlight detail 719
-- performance 720
-- qualifying a head to a specific application 714
-- reliability 715
-- selecting right printhead technology for label market 714
-- smooth blends 719
-- uniformity 718
-- viscosity range 716
integrator 490, 492
-- role of 490, 491
intelligent layout 728
-- automated image matching 728
-- CAD import 728
-- job container with multiworkflow automation 729
-- MIS integration 728
-- object specific optimization 729
-- rules-based step and repeat 728
-- variable data 729
-- versioned and ganged labels 728
-- wide range of supported devices 729
interdigital capacitors (IDCs) 626
-- layout for printing 627
intermediate media 186
internal acoustics 445
International Color Consortium 739
International Electrotechnical Commission 200
International Roadmap for Semiconductors (ITRS) 853
internet enquiry 737
intracolor drying stations 56
intravenous (IV) 148
iron-doped medium-pressure mercury lamp
-- emission spectrum 121
iron oxides 749
irradiance 123
irradiation 657
isobornyl acrylate 135
isolation 569
isopropanol (IPA) 226
isopropyl thioxanthone (ITX) 82
ISO Standards 381
isotropic conductive adhesive (ICA) 619
iterative learning control (ILC) 442
ITO. see indium tin oxide (ITO)

jet
jet and flash imprint lithography (J-FIL) 852, 853
-- applications in semiconductors 862
-- defectivity 859
-- improvements 857
-- in inkjet dispensed drops and contact molding 853
-- multitiered dual damascene structures 864
-- nanoimprint lithography 862
-- process for nanoscale patterning 855
-- spin coats 853
jet break-up mechanism downstream 413
JetSpyder™ printhead technology 676
jetting
-- algorithm 220
-- assembly 588
-- behaviour 605
-- between colors of a commercial UV ink sets 412
-- conditions
-- complex rheology characterization tools 416
-- frequency 856
-- performance 165
– sustainability 42
– automated methods 43
– manual methods 42
– temperature 34, 154
JetXpert system 40
J-FIL see jet and flash imprint lithography (J-FIL)
JPT-C-2100 prints 830
JUPITER
– comparison between 830
– inner view 826
– printers
– – JPT-C-2100 829
– – machine 826
– – modular concept 823
– products printed by 829

k
kaolin 749
KHS Company 799
– development parameters 804
kiln process 769
kilohertz systems 527
kinetic energy 324
Kodak Enterprise Inkjet Systems Division 351
Kodak PROSPER™ 351
– inkjet 356
Kodak Stream Technology 842
Kodak Versamark 6240 technology 842
Konica Minolta
– documentation 260
– inkjet division 254, 738
– inkjet printhead technology 253
– – alignment 277
– – bad ink 276
– – basic waveform effect 260
– – consistency 272
– – electrical waveform signals 261, 277
– – future prospective 280
– – history 253
– – interleaving prinheads 257
– – KM printhead strengths 267
– – life 273
– – markets/geography 278
– – quality 271
– – reliability in inkjet printing 267
– – series 255
– – type 204 printhead 254
– – inkjet team 258
– – inkjet technology 742
– KM512 264
– – actuator structure 256
– – KM512LN printing heads 614
– – printheads 254, 257, 259, 260
– – series 258, 262
– – vs. KM1024 264
– – KM1024
– – actuator structure 264
– – architecture KM512, comparison of 264
– – family 263
– – KM1024i series 10, 263, 265
– – series 262
– – typical printhead mounting plate 262
– – KM drive per nozzle printheads 280
– – KM1800i 11, 266
– – KM independent channel printheads, print productivity 280
– – KM128 SNG 281, 282
– – typical accuracy 282
– – printheads 272, 278, 279
Konica technology 254
Konishiroku Photo Industry Inc. (KPI) 253
– missing nozzle 254
kraft paper 747

l
label functionality 684
label printing
– optimum compatibility, role of 736
label substrates 686
Lambert–Beer equation 62
lamine flooring industry 817
– automatic décor selection 821
– color deviation, role of 820
– correction lot 821
– décor length 821
– décor mixing, role of 820
– décor storage, role of 820
– digital printing, role of 820
– lot-size one, role of 820
– production speed 821
– register correction 821
lamine manufacturing
– analog process 819
– flooring tiles 818
– industry 748, 749, 817
– layers involved 818
– process 819
lamine planks 820
lamine printing
– data transfer 831
– integration 831
– key features 831
– maintenance 831
– modularity 831
Index

- system approach 831
- lamination 751
- larger wide format machine manufacturers 26
- laser ablation 226, 640
- process 636
- synthesis 197
- laser-based solution 655
- laser direct-write postprocessing 645
- laser-Doppler interferometry 441
- laser Doppler vibrometer (LDV) 286
- laser measuring system 746
- laser modification 646
- laser processing, heads 635
- laser scanning microscope 205
- laser sintering 643, 654, 657, 658
- latency comparisons 53
- latex inks 172, 173, 175
- latex printing process, drying/curing stages 175
- LCD lithography 404
- LED. see light-emitting diode (LED)
- LEL. see lower explosion level (LEL)
- licensee MIT-Inkjet 285
- ligand-free nanoparticles 197
- light-emitting diode (LED) 529
 - characteristics 530
 - dryers 735
 - lamp 530
 - manufacturers 531
 - radiation sources 107
- light scattering 446
- lignins 185
- linear erosion 450
- linear machine 743
 - concept, with continuous bottle transport 806
 - design 805
- line break defect 858
- line conveyor belt 764
- liner materials 688
- line scan camera 446
- LineScan technique 447, 455
- liquid-crystal polymer (LCP) 618
- liquid electrophotography (LEP) 695
- liquid fraction density 156
- liquid-phase sintering 656
- liquid UV inks, health/safety aspects 137
- lithography
 - approaches 631, 863
 - offset 744
 - soft 851
 - thermal imprint 853
 - tools, increasing cost 862
- lookup table (LUT) 451
- lower explosion level (LEL) 19, 574
 - condensation 575
 - decrease air flow speed 575
 - decrease temperatures 575
 - enough refreshment 575
 - preheat drying oven 575
 - proper air pressure 575
- low-migration (LM) inks 142, 146, 147
 - formulation 812
- UV inkjet inks vs. standard UV inkjet inks 146
- low-pressure laminate (LPL) 751
- low-pressure plasma principle 514
- LPKF-LDS process 629
- LPL. see low-pressure laminate (LPL)
- lucifer yellow labeled biotin (Y-biotin) 666
- LUT. see lookup table (LUT)

m
- machine concept 802
 - influencing factors 803
- machine design 810
- mandrel 739
- manroland web systems 838, 841
 - CROMOMAN 839
 - integrated inkjet block diagram 846
 - product inkjet integration 842–848
 - automation module details 845
 - integrated inkjet operation 848
 - integrated inkjet workflow/usability 847
 - web lead module details 843
- manufacturing
 - capacitive touch screens 636
 - floor applications 313
 - process 685
 - marangoni flow 415
 - market sectors 708
 - label market 708
 - UV inkjet 708
- marking 141
- Martinenghi
 - link with 738
 - system 737
- masking
 - agents 200
 - filling improvements 859
 - techniques 184
- mass customization 323, 800
- master printers 772
- material compatibility 268, 490, 493
- material properties 380
– barrier properties 387
– long-term durability and recycling 388
– chemical properties 381
– electrical and optical properties 384
– environmental effects and durability 386
– mechanical properties 383
– thermal properties 381
Material Safety Data Sheet 138
materic effect 5
matrixphilic segment 137
maximum spreading factor 165
M-Class jetting module 241
mechanical devices 743
mechanical ink jetting (MIJ) 319
mechanical Memjet 347
mechanical valve inkjetting (MVI) 319
– VideoJet Systems International coder systems 319
mechanical weave 767
mechatronic/robotic control 791
mechatrons 787, 803
– machine 810
medium-density fiber/high-density fiber boards 818
medium-pressure mercury lamp 119, 120
– emission spectrum 120
ME160H two-color version 282
melamine-faced chipboard (MFC) laminate 751
melamine impregnated paper, thermosetting of 756
melamine resin 747
– based impregnation 756
– lamination of 747
melamine treated paper 751
melting decomposition temperatures (Tm) 377
Memjet
– balancing cost vs. performance 341
– based products 336
– continuing to set standard 347
– designed for success 339
– drop ejector array 337
– future innovations for ink, and printheads 346
– inks 342
– key parameters, for current printheads 341
– in marketplace 343
– printhead 336
– manufacturing 338
– printing system 335
– magenta inks 342
– technical history of 336
– thermal printhead nozzle 338
– Waterfall Printing Technology™ 335
MEMS. see microelectromechanical system (MEMS)
meniscus pressure 776, 783
mercury arc lamps 535
mercury-doped 134
mercury lamps, medium-pressure 122
mesh count 16
mesh geometry 16
metal lines
– adhesion properties 619
– on injection-molded substrates
– – inkjet printing 618
– – printing results 618
– – resistance 619
metal nanoparticle 197, 216
– conductive ink 216
– inkjet printing 218
– inks formulation
– – additives 199
– – adhesion 209
– – application of functional inks 199
– – bulk factor 208
– – chemical precipitation 198
– – chemical reliability 213
– – contact angle 203
– – electronic applications 195
– – end-user requirements 195
– – flame spray synthesis 197
– – flexibility 211
– – fluid systems/printed patterns, characterization of 200
– – functional inks for printed electronics 195
– – laser induced 197
– – physical/chemical characterization 9, 200
– – polyl process 197
– – printability/jetting performance 204
– – printed patterns, physical and electrical characterization of 203
– – printing definition 208
– – resistance/resistivity 205
– – rheology 201
– – solvothermal synthesis 197
– – surface hardness/scratch resistance 210
– – surface tension 202
– – thermomechanical reliability 212
– – topography measurement 205
– – wet milling of bulk metal 196
– – zeta potential 201
metal organic decomposition (MOD) 215
– drawbacks 199
metamerism 752
metamers 752
2-methoxycarbonyl-substituted
benzophenone 81
methyl ammonium lead trihalide
(perovskites) 639
methyl diethanolamine 85
methyl ethyl ketone 25
4-(4-methylphenylthio)-substituted
benzophenone derivative 82
Michelangelo printing machine 737, 744
Michler’s ketone 106
MICR ink 173
microchip fabrication 524
microcontact printing 851
microelectromechanical system (MEMS) 352, 654. see also silicon micro electro-
mechanical systems (SiMEMS)
– based actuators/sensors 247
– CMOS chip 339
– drop ejector 301
– KM MEMS printheads 283
– – operating method 282
– – specifications 283
– – mirror 439
– – silicon MEMS-based printhead 241
– – Samba printhead 166
– – technology 280
MicroFab 4-fluid printhead station 672
microlens 653
– optical properties 653
microreaction technology (MRT) 198
microzoning 835
– amorphous 376
migration-sensitive applications 144
– food packaging applications 106
– low-migration inkjet inks 142
migration testing 813
milled glazes 763
milling chamber geometries 138
missing drops 431
MIT folding endurance test 212
models of converting using inkjet 702
– desktop converting 702
– full hybrid solution 705
– fully integrated laser-based finishing 705
– fully integrated semirotary or full rotary
– magnetic die-cutting, slitting, and
– sheeting 704
– low investment 703
– reel to reel with inline finishing 704
– reel to reel with offline finishing 703
– retrofit hybrid solution 706
– third-party finishing solution 705
Modular, rotary machine concept 808
Moiré-like artifacts 482
molded interconnect device (MID) 617
molding press 764
molecular surface composition 514
monoacylphosphine oxide (MAPO) 71, 73, 100
Moore’s law 862
mottling effects 174
moulds 652
M-Solv 635, 638
– manufacture hybrid II/laser equipment 636
– MSV6505 639
– MSV200 series
– – inkjet/laser hybrid materials processing
tool 645
– – machines 644
multichannel radiometer, spectral
sensitivity 124
multifunctional polymeric α-hydroxyketone
photoinitiator 103
multiopening presses 817
multipass
– industrial printing machines 25
– printing 132
multiple charge deflection, during CIJ 314
multiple encoders 739
multiple variable data applications, in one print
product 836
multizone dryer, with web handling 576

n
Na+ ion 396
NAND flash memory 864
nanoimprint lithography (NIL) 851, 856, 862, 865
– basic components 852
– process 853
nanosilver-based inkjet inks 8
nanosilver ink 626
nanosilver sol
– viscosity vs. shear rate 202
nanosize effect 215
narrow nozzles rows 267
narrow web ebeam dryer (NED) 554
Nassenger textile printers 258
National Institute of Standards and Technology
(NIST) 125
National Metrology Institute of Germany 125
near-field communication (NFC) 609
near-infrared (NIR) 604
newspapers
– individualization 833
– – applications and business models 833–835
combination of applications in one print product 835
cross media 835
gaming and lotteries 833
logistics 835
microzoning 835
as link to online media 834
press 839
basic principle 836
imposition layout 837
printing 833–840
arrangement of digital print unit 839
production 837, 839
Newtonian flow behavior 412, 417
fluid 422
low-molecular-weight PS20 425
NIL, see nanoimprint lithography (NIL)
nitrogen inertization 131
N-methyl-2-pyrrolidone (NMP) 258
nonabsorbing
food container 811
substrates 380
noncontact inkjet printing 5
noncross-linked molecule chains 812
nondoped 134
nonfiring state 166
nonlinear mapping 795
non-Newtonian
behavior 423
rheological constraints 653
non-page-wide incarnations 321
nonprinting pulses 294
Norrish type I reaction 64
Notion Systems 490
NovaCentrix 560
Pulseforge 1300 460
Nova/Galaxy assemblies 241
NovoGen MMX BioprinterTM 673
nozzle 352, 447
array 753
NPI 591
widths 351
chamber 475, 481
columns print 466
design in HP A51 328
electrostatically deflected 314
errors 466
evolution of number of 319
firing 270
geometry 318
hole
particle 274
solids buildup 275
latency/open time 43
mapping 793
moisture levels 321
number and flow rate of 320
output 313
packing density 467
per column in (NPCI) 321
pitch variations 496
plate 245, 433
flooding 445
material 275
redundancy 466
relative position 302
rows 497, 791
selection 795
sensing 437
wetting 163
Nur 26
Oce Colorsteam 3000 Twin 172
OE-A organization 8
OEM customers 279, 742
OEM projects 24, 742
offset printing 846
Ohnesorge number 665
oil-based pigmented inks 4
OLED, see organic light-emitting diode (OLED)
oligomers 136, 653
one-step interconnect (OSI) 641
process stages on CdTe TF-PV
microscopic images 642
TF-PV mininmodules 642
operating window tests 268
operator software 848
optically sensitive substrates 636
OPV, see organic photovoltaic (OPV)
orange peel 657
organic
contamination 396
degradation 157
pigments 749
polyelectrolytes 368
organic light-emitting diode (OLED) 10, 225, 459, 575, 601
architecture 226, 230
device 613
performance 227
grid structure/conductive polymer 227
indium tin oxide (ITO) 10, 225
inkjet printed layers
Index

– based on emissive polymers 230
– inkjet printed PEDOT
– PSS layers 228
– inkjet printing 10, 225
– printed OLED security feature 232
– substrate
– and bottom electrode 225
– pretreatment for inkjet printed 10, 225
– transparent electrodes 10, 225
organic photovoltaic (OPV) 611
– cell 612
– inkjet-printed, using chlorinated solvents 612
– solution-processed 611
osteochondral material 668
outdoor floors 764
oven drying, of inkjet-printed functional fluids 567
oven temperatures 571
overprint varnishes 544
oxygen inhibition 63, 111
ozone cleaning system 518

p
packaging 5, 142
– types 712
– workplace, digital technology for 744
pad printing 7
page-wide array (PWA) 320
– incorporating printer 326
– inkjet die design 327
page-wide printing 320
– using TIJ 321
paint measurement 436
paint signal 436
palletizing 811
pantone inks 739
paper
– based substrates 363
– as carrier 749
– colors 752
– definition of 363
– properties of 364
– bulk properties 364
– laminates and composites 369
– physical-chemical interaction of inks with the paper 367
– porosity and ink penetration 366
– wetting and surface properties 366
– sheet, melt extrusion coating with 369
paraffins 152
para-hydroxyethoxy substituted
α-hydroxyketone derivative 67
parking plates 826
particle size 368, 657
– distribution (PSD) 186, 189, 216
– reduction 136
pasteurizing 811
PEDOT:PSS. see poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)
peel and reveal promotional label printed using graphium 701
pencil hardness test 210
PET. see polyethylene terephthalate (PET)
PH. see printhead (PH)

pH drift 170
phenolic resin, thermosetting 747
phenyl acrylates 135
4-phenylbenzophenone 81, 84
phenylglyoxylate esters 77
photoabsorbers 645
photoactive layer 612
photodiode signal 561
photogenerated acids 61
photograde inkjet paper 370
photographic plate coating 59
photoinduced β-cleavage reaction 84
photoinitiators 59, 60, 117, 118, 134, 138, 139, 546, 553
– absorbing 62, 119
– acylphosphine, absorption, photobleaching 74
– acylphosphine oxides 71, 72
– α-aminoketone 68, 69
– benzoin ethers 66
– benzoin isopropyl ether 66, 67
– bisacylphosphine oxide 73
– blends 64, 73, 103
– type I 83
– for UV LED applications 105
– class 66
– cointiators 85
– difunctional combining 7
– difunctional α-hydroxyketone photoinitiators 68
– historical background 59
– α-hydroxyketones 67
– low-migration food packaging 86–104
– miscellaneous classes 78
– mixtures 63
– SML values 88
– types 77
– type I 7, 63, 64
– type II 7, 78, 81, 82, 96
Index

- UV inkjet inks 60
- UV LED curing 104
- UV radical curing 62
- UV/Vis absorption spectra 66
- water-based UV inkjet 108
- photolithography 8, 226, 852
- bezel made by 607
- photonic curing 557–559, 561, 563, 564
- inkjet printed nanocrystal silver ink 561
- inkjet-printed silver trace. 561
- low-temperature substrate 563
- operating parameters 560
- production tool 558
- sinter nanocopper particles in air 563
- technology behind 558
- photonic flash sintering 459
- photonic sintering 602, 642, 643
- photopolymerization 59, 117
- unsaturated substances 59
- photopolymerization efficiency 94
- photo printing 173
- photoresist patterning 851
- photosintering process 218
- photovoltaic (PV) 8, 643, 662
- material 639
- Photron SA5 high-speed camera 592
- phthalocyanine-based cyan 173
- physical vapor deposition (PVD) 287
- PI. see polyimide (PI)
- piezo-activated torsion resonator 418
- piezo-actuator 783
- piezo-axial vibrator (PAV) 417
- oscillatory linear viscoelastic data 418
- piezoelectric. see also piezoelectric inkjet (PIJ)
- ceramic strip 295
- DOD aqueous dye sublimation ink
- physical property 186
- effect 286
- element 435
- performance, figure of merit 247
- printheads 166
- transducer 663
- piezoelectric inkjet (PIJ) 25, 315, 317, 431, 663
- devices 414, 666
- printhead designs 316
- printing 319
- technologies 467
- pigment 136, 153, 158, 167, 169, 173, 174
- agglomerate, in slurry 138
- dispersion 138, 139
- inkjet inks 191
- as colorants 172
- inks 782
- - with emulsion polymers 8, 173
- and matter interacts 158
- nonfunctional pigment inks 173
- particle sizes
- in inkjet inks 136
- slurry 138
- stabilization process, by steric stabilization 137
- surface 138
- pigmentophilic group 137
- PI. see piezoelectric inkjet (PIJ)
- pinning 811
- PixDro LP50 603, 605
- printing platform 614
- pixel-based printing method 497
- placement error 587
- Planck–Einstein relation 117
- plasma
- activation 523
- chamber 516
- cleaning 522
- etching 524
- point source, with rotary nozzle 521
- reaction, chemistry and physics 513
- surface treatment methods 513
- systems 526
- working 17, 512
- plasticizer 187
- plastic laminates
- application 747
- material 747
- plastics
- packaging decoration 743
- substrates, printing on 140
- water and oxygen permeation 388
- Plastics Directive 145
- Plateau–Rayleigh instability 314
- platform design 501
- automation 505
- complexity and performance 506
- drop formation analysis 504
- environment 505
- ink supply system 503
- - recirculating ink supply 504
- - size and refill concept 504
- - static ink supply 504
- - maintenance 504
- modular engineering 502
- nozzle calibration 502
- platform layout 502
- precision and repeatability 502
- print stage 502
- - adaptation of print direction 503
Index

- -- substrate fixation 502
- -- substrate temperature 502
- process unit 503
Polaris PQ 244
polyamide (PA) 620, 628
- fibers 363
polycarbonate 373
- electrical properties 387
poly-diallyl-dimethyl-ammonium chloride 368
polyester 136, 363
- foils wetting envelopes 607
- molecular structure 171
- textile materials 187
polyether acrylates 136
polyether ketones 373
polyether polyols (PEPO) 190
poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) 228, 613
- dispersions 228
- film 229, 230, 233
- ink 614
- inkjet formulations 229, 230
- layer 611
poly(ethylene) glycol (PEG)
- macromers 667
- substituted derivative 68
poly(ethylene) glycol dimethacrylate (PEGDMA) 668
polyethylene naphthalate (PEN) 602
polyethylene terephthalate (PET) 80, 187, 209, 602, 812
- beverage bottle 147
- conventional filling line 802
- film 221
- PET-ITO-1, microscopic images 608
- polyester 689
- web material, four-zone/two-stage temperature recipe 569
polyimide (PI) 209, 618
- film printed pattern 221
- foil 625
- -- resistance measurement of inkjet-printed silver tracks 619
- inkjet-printed conductive silver tracks 618
polymer
- based substrates 226
- components, chemical composition 374
- dimensional changes due to change in temperature 388
- dispersant 136, 138
- -- pigmentophilic groups 137
– cross-sectional area evaluation 206
PRELECT® TPS 30G2
– drop-watcher analysis 204
– fine electrical traces with good printing 210
Prelect TPS 60 G2
– silver sol 201
– thixotropy measurement 203
prepolymerized materials 546, 653
press configurations/page layouts 838
press control interface 849
pretreatment method 525
– geometry of parts and substrates 525
– process gas limitations 525
– process temperature limitations 526
priming 140
print carousels, fully equipped 809
printed circuit board (PCB) 215
– based thermostet package 630, 631
– metal contact pad 621
printed electronics (PE) 7, 601
– bezel in touch panels 606
– inkjet printed organic photovoltaics 610
– printed smart card 605
– production upscaling 602
– smart labels 609
– two-colored organic light-emitting diodes 613
printed metal lines 621
– electrical connection 620
– contact pads 620
– isotropic conductive adhesive 622
– soldering 621
– spring contacts 621
– inkjet printing on 3D surfaces 622
printer
– frames 777
– modules 335
printhead (PH) 741, 753, 758, 766, 769, 773, 783, 787–789, 793
– aligning 825
– alignment errors 766
– arrangement of 740
– array 8, 789, 790
– choice of 493
– availability 494
– material compatibility 493
– productivity 496
– recirculating printhead 16, 494
– resolution and minimal feature size 494
– rheology 494
– specific pattern requirements 496
– control 438, 828
– and corresponding printing grid 497
– for decor printing application 24, 754
– design 411
– drawing 306
– evaluation 38
– drop viewing 39
– equipment 38
– ink supply 38
– and gray level 717
– with internal ink circulation system 189
– jetting characteristics 583
– life 267
– manufacturers 204, 646
– nozzles 155, 277
– plate 478
– printing 781, 794
– and resist delivery system, requirements 856
– Spectra QE-128 620
– static, continuous bottle transport 805
– tolerances 277
– voltage labels 271
printing. see also screen printing
– antennae 18, 630
– applications, in digital production 756
– artifacts 431
– bars 8
– battery, stack design of 18
– bottles, recycle 814
– conductive silver tracks 622
– conductive tracks 624
– cotton 170
– cycles 739
– of cylinders/tubes 793, 795, 797
– definition, good
– fine electrical traces 210
– electronics (see printed electronics (PE))
– environment 7
– functional materials 664
– inks 749
– properties 8
– manager 828
– OE-A classification 11
– onto cones 795
– onto spheres 796
– parameters 209
– paths 789
– direct-to-shape 787
– curved surface 787
– onto a cup 791
– onto a flat surface 790
– patterns 44, 455
– on pens, phone covers, laptop covers 141
– process factors 22, 44, 685
– contact angle testing 45
Index

-- pretreatment 45
-- print evaluation methods 46
-- surface wetting 44
-- productivity 531
-- quality 56, 268, 727
-- monitoring 814
-- optimization 848
-- vs. print speed 841
-- segments 809
-- shapes 788
-- silver tracks 618, 629
-- software 745
-- speeds, landing inaccuracy 481
-- strain sensors 625
-- strategy 497
-- dosing applications 499
-- jetting evaluation 501
-- pattern generation and adaptation of print direction 497
-- postprocessing 500
-- preprocessing 499
-- printing onto substrate grid 498
-- process evaluation 499
-- stress sensor 625
-- systems
-- holistic approach to 342
-- UV inkjet ink 133
-- technologies 617, 803, 810
-- unit, with eight printheads 505
-- wet on wet 792
-- workflow 815
processed per second (PPS) 465
process optimization 459
product development 650
productivity 11, 582
profile bars 827
projects delivery 742
ProJet™ printers 653
proprietary differentiation 800
protein-based inks 666
prototype ebeam inkjet dryer 554
prototyping interactions 56
Proxel-GXL containing BIT 167
pucks 815
2011 puck system 809
PulseForge® 560
pulse-forming network (PFN) 559
pulse width modulation (PWM) 559
pulverization equipment 189
pure silver, volume resistivity 208
purge cycle 780
PUSH™ process 655
PWA. see page-wide array (PWA)
 pyramid produced by printing aqueous ink onto 652

q
Q-Class 245
QDs. see quantum dots (QDs)
quantum dots (QDs) 10, 233
-- inkjet printing of QLED devices 235
-- inkjet printing on paper 10, 235
Quick Response Code 148
quinophthalone 182

r
radiation absorption 61, 62
-- by photoinitiator 62
radical formation 63
radio-frequency identification (RFID) 232, 601
-- card 605
-- chips 606
-- tag 606
radiometer 123, 126
-- single- and multichannel 126
-- strip spectral sensitivity 127
rapid prototyping 650
raster image processing (RIP) 185, 467, 589
raw paper sheet cross section 365
raw paper surface 364
Rayleigh-Plateau instability 440
Rayleigh-Taylor instability 433
reactive ion etching (RIE) 524
reactive organic metallic (ROM) 199
reagglomerate 136
real-time surface scanning 791
RediJet technology 245, 246, 248
red small-molecule emitters (RSM) 613
reflective optics 852
refractive indices 385
relative humidity (RH) 628
reliability 4, 445, 725
-- assessment 42
-- industrial-grade transport system 726
-- jettability 195
-- printheads 725
resins 653
-- impregnated kraft papers 751
resistant polymeric network 132
resistivity values, of common materials 207
resolution 8, 356
-- achievable 17
-- and productivity 493
reusable labels 687
reverse osmosis-based processes 170
Reynolds number 324, 665
RFID. see radio-frequency identification (RFID)
rheology 25
 – compatibility 493
 – modifiers 200
 – profile 201
roller kiln 763
 – hybrid 764
roller printing 768
roll-to-roll (R2R) 179, 601, 613
 – industrial-scale manufacturing 602
 – JUPITER JPT-W-840 827
 – 5 laser processing machine 639
 – modes 636
 – printing process 605
rotary die-cutter 735
rotary gravure. see rotogravure
rotary machine concept 807
rotational screen printing process 15
rotogravure
 – lab printers 757
 – machines 748
 – printing 750, 752
 – machines 750
R2R. see roll-to-roll (R2R)
R0603 SMD on printed metal lines 622

s
SAMBA printheads 246, 590
sample web lead 845
Sapphire QS 244
satellite drops 431, 432
scalable printing technology (SPT) 321, 466
scanning electron microscopy (SEM) 205
SCHOTT antifingerprint-coated MIROGARD DARO glass 401
SCHOTT borofloat glass
 – inkjet-printed 207
SCHOTT thin glass 394
Scitex 26
screening techniques 794
 – variations 486
screen printing 4, 16, 609
 – fine line stencils and print results 20
 – principles and capabilities 13
 – variants of 14
 – vs. inkjet 11
sedimentation 156
selection criteria 687
selective laser sintering 643
self-adhesive labels, stock 687
semiconductors 489, 524, 640, 861
semirotary die-cutter 735
sensitization processes 63, 83
sensors 489, 662
 – on 2D/3D plastic substrates 617
 – on injection-molded thermoplastic substrates 624
 – antennas 630
 – fluid-level sensor 628
 – humidity sensor 627
 – intrusion sensor 629
 – temperature sensor 624
 – touch sensor 626
 – sensitivity 628
Service Carriage 321
shaft encoders 742
shapes 788
 – cylinder or tube 788
shearing defects 856
sheet-to-sheet (S2S) modes 602, 613, 636
shelf life 527
shrink packing 811
silica/alumina-based minerals 157
silicon-controlled rectifier (SCR) 559
silicon die 304
silicone additives 34
silicone rollers 763
silicon micro electro-mechanical systems (SiMEMS) 242. see also
 microelectromechanical system (MEMS)
silk/screen printing 738
silver-containing sample, with nitric acid 201
silver ink 625
silver inkjet formulations, for grid applications 227
silver metal nanoparticle conductive ink (NPS-J) 216, 642
 – sintering temperature and resistivity 217
silver nanoparticles
 – particle size distribution 217
 – TEM image 217
silver nanowire (AgNW) networks 637
SiMEMS. see silicon micro electro-mechanical systems (SiMEMS)
SimPulse software 561
single conductive ink droplet, ejection of 219
single-droplet ejection 447
single-nozzle flux 583
single-nozzle inkjet dispenser 670
single-pass printer 777
 – frame 772
 – inkjet printing 133, 140, 583, 784
 – printhead 583 (see also printhead)
single pinning lamp 740
sintering 7, 656, 657
– high-speed 658
– inhibitor 657
– sintered polymers 654
– sintered silver nanoparticles, physical and electrical behavior of 203
– S2S tool 605
– temperature behavior 208
skin irritation level 137
skyscraper mode, printing 308, 793, 795, 807
slab 764
slave printers 772
slot die coating 8
slurry 762
small office and home office (SOHO) 185
– market 7
– printers, thermal and piezo printheads 141
small-scale photonic sintering setup 603
small-scale vacuum plasma system 523
small tube, time to print 740
small vacuum-enabled slit 826
smart packaging 601
Smithers PIRA 7
software and workflow concepts 814
solar cell 8, 489
– perovksite-based 611
solder bump 652
solenoid valve 319
solid color printing 765
Solid Ink technologies 30
Solidscape Inc. 652
solvent
– based fluids 474
– based inks 781
– carrier cooiling vapor 191
– in functional inkjet formulations 199
– inks 174
– vs. UV-curable inks, drying process for 130, 822
sonification 666
spatial frequency track wobble 482
Spectra Inc 26
spectral UV categories, ISO 21348 119
spectroradiometer 125
– spectral sensitivity 126
SPGPrints BV 604
spin coating 228, 230
spray drying 761, 762
SSMMEB. see steady-state macroscopic mechanical energy balance (SSMMEB)
ST. see surface tension (ST)
standard ceramic ink
– particle size distribution curve 153
– viscosity curves, at different temperatures 155
standard deviation 450
standard errors 454
StarFire
– SG1024 166
– SG1024/A printheads feature fluid interface 246
– SG1024/C
– features 400 dpi 245
– ink connections 245
– printheads 246
starvation 478
steady shear rheometers 417
steady-state macroscopic mechanical energy balance (SSMMEB) 323
– equation 324
– factors and relationship to 325
– factors differ based on type of inkjet technology 324
sterilization step 148
stitching 791, 793
– strategies 792
– 1D density 792
– 2D density 792
– density stitches 792
– masking stitches 792
– moving stitch 792
– 50% stitch 792
strain-printed meanders 626
Stream Inkjet Technology 351–353
– future perspective 359
stress elongation curves 384
stress-strain curve 384
stripping 524
stroboscopic setup 440
sublimation
– colorants 182
– in digital imaging 182
– dyes 182, 183, 186, 187
– imaging 187
– major advantages of 181
– inkjet ink 187–189
– applications 181
– printing 188
– transfer parameters 181
– printed polymer substrate viewing effect 182
– transfer printing process 180
substrate 686
– coating/pretreatment, 193
– preheating system 56
– supplied, cleanliness of 510
– surface condition matters 17, 509
Index

– technical specification 686
 suction 780
 cleaning 826
sulfonated lignin, chemical structure of 185
 α-sulfonyl ketone 84
SunChemical 25, 26, 48, 619, 622
superinkjet technology 221
supply chain 801
surface activation 517
 – ingredients 164
surface energy (SE) 55, 378
surface mounted devices (SMD) 619
 – on printed metal lines 621
 – with ICA 622
 – R1206 620
 – resistors 621
surface preparation 636
surface pretreatment methods 512
 – cleaning and activation 17, 515
 – industrial usage 518
 – atmospheric plasma 519
 – corona 518
 – vacuum plasma (or low-pressure plasma) 521
surface properties 368, 510
surface quality 385
surface roughness 366
surface structures, for minimization of UV light reflections 541
surface tension (ST) 25, 55, 318, 353, 378
 – of LDPE 379
 – low dynamic 55
surfactants 199, 201, 662
 – surfactant/Ag ratio concentration 197
sustainability 582
swathes, meeting 792
sweating 474
Swiss Ordinance
 – 817.023.21 145
 – SR 617.023.21 93
 – SR 817.023.21 87
synthetic polymer 174
system temperature control 572

T
talc 749
technical DNA 731
TecnoFerrari
 – GeCo software 778
 – ink distribution system 783
 – printer components 775
 – VivaJet printer 772

– Vivascan 3D pattern detector 773
telecentric illuminator 446
temperature-controlled ink 305
temperature cycle test 212
tensile properties, of polymers 385
tertiary alkylamines 86
testing tube printer systems 742
test methods, for surface activity 511
 – contact angle test 511
 – test inks 511
 – Test Methods Manual IPC TM-650 212
tests latency 44
textile printing 163
TF. see through-flow (TF)
theoretical gray-level distributions, in imaging of droplets 449
thermal inkjet (TIJ) technologies 25, 176, 316, 663
 – based bioprinting technology 668
 – conductivity 405
 – curing process 196
 – damage 657
 – device 664
 – drying ovens 745
 – dynamics 572
 – induced oxidization of polymer powder 657
 – management 352, 563
 – mass 562
 – printheads 179, 320
 – – chips 466
 – – designs 318
 – – printing 319
 – – processes 562
 – – sensitive substrates 646
 – – stability 4
 – thermo gravimetric analysis 201
thermophysical properties 560
thermoplasts 812
thermosetting 747, 750, 753, 755
 – brittle polymers 383
 – packages 630
 – polymers 377
thin film PV (TF-PV) 308
 – panels 639
 – technologies 643
thin film transistor (TFT) 601
thinner caliper liners 687
thinner film-based liners 687
thioxanthone 84
 – absorption maxima 107
 – derivatives 67
 – ketyl radicals 84
 – photoinitiators 76, 77, 82
– thioxanthone/amine coinitiator reaction 83
– UV/Vis absorption spectra 83
thread diameter 16
three-cycle acoustic firing
– cycles, phases, and grayscale 289
through-flow (TF) technology 822
through nozzle tester (TNT) 304
tic marks, detection, histogram of 456
TII. see thermal inkjet (TII)
tile
– bodies 762
– dark white ink printed 160
– inkjet printing 781
– pseudometallic effects 160
tilted printhead 500
time-of-flight device 417
Timson, Marcus 7
TiO₂ for printing white 163
tissue engineering 322
titanium dioxide 137, 749
toluene 318
total cost of ownership (TCO) 473, 801
– iceberg model 473
total organic carbon (TOC) 201
touch panel (TP) 606
trace resistivity for photonic cured samples 562
trace-substrate interface 563
trade-offs 790
transfer
– media 186
– membrane/film 186
– printing method 180, 187
transparent conductive (TC) 637
– coated dielectric substrate 637
– material 637
transparent polymer 227
trends in industry 708
– anticounterfeiting and brand protection 712
– clearer more transparent labeling 711
– more stringent guidelines
– – new labeling technologies 712
– reduced lead time 708
– reduction in quantities and increase in frequency of orders 711
– shrink-stretch sleeve 713
– supply chain tracking 713
– sustainability and eco-friendly materials 713
– variable data 711
1,2,4-trichlorobenzene 230, 231
trigger signal correction 825
trimaster filament profile 421, 422
– thinning profile 424
trimaster setup 419
trimming capability 295
tristimulus values 752
Triton™ X-100 228
TTP Meteor 179
tubes
– chemical incompatibility 474
– inner diameter 476
– printing 141
tunnel dryers 762

u
ultraviolet (UV)
– absorber 192
– – Tinuin 405 192
– artificial radiation 59
– curable inkjet ink 129, 130, 689, 811
– – epoxies 318
– – formulation 111, 135
– – organic pigments 136
– curing 547
– – delay 739
– – insulator 626
– – performance 111
– – technology 59, 130, 138
– EB radiation 546
– energy 117
– exposure 129, 130
– flexo 142
– – formulation 70, 80, 546
– – induced polymerization mechanisms 131
– – applications 63, 80, 108
– – compounds 134
– – films 119, 120
– – flexo and offset low-migration 145
– – formulation 61, 63, 64, 68–71, 93, 103, 117, 130, 131, 134, 137, 140
– – free radical 131
– – for industrial applications 129
– – in industrial print systems 139
– – production 138
– – requirements 132
– – types 130
– – viscosity 134
– – inkjet label printing 142
– – inkjet printing 129, 132, 142, 697
– – multipass and single-pass 133
– – solutions 148
– – water-based formulations 108
– – inkjet single-pass printing system design 140
– – inkjet systems 139
– – lamp 547, 653
Index

-- -- types 739
- LED array 532
- LED benefits 537
- LED curing 141, 147, 529
- Braille printing 539
- coding and marking 539
- container printing 539
- decoration 539
- digital inkjet 18, 538
- D textured printing 540
- features of 537
- flexographic printing 538
- integration considerations 540
- labels and packaging 539
- markets and applications 538
- material formulation 537
- photoinitiator (PI) 537
- pinning 540
- posters and signage 539
- screen 18, 538
- stray light 541
- systems 529, 531, 731
- thermal management and aerodynamics 540
- LED lamps 532
- -- system suppliers 531
- LED light source 534
- -- components 530, 531
- LED radiation sources 69, 75, 82, 93, 122, 124, 134
- -- emission spectra of 122
- LEDs low-irradiance 140
- LED technology components 529
- -- array, grouping of LEDs 531
- -- base building block 530
- -- cooling, thermal management 532
- -- optics, guiding light 533
- light 134, 270, 529, 547
- liquid UV inks, health/safety aspects 137
- offset 142
- ozone treatment 226, 517
- pinning 739
- -- lamps 488
- -- module 733
- printers 653
- printing 147
- -- on interior decoration panels 142
- -- systems 139
- radiation 64, 104, 117, 120, 123, 131–133
- -- absorption 117
- -- blocking nanoparticles 192
- -- energy correlation with wavelength 118
- -- inkjet ink films 119
- -- measurement 123
- -- wavelength 117
- -- radiation source 118, 125, 139, 140
- -- doped medium-pressure mercury lamp 120
- -- LED technology 122
- -- medium-pressure mercury lamp 119
- standard inkjet inks 145
- -- systems 141
- uniformity of UV LED light source 538
- UV-A ink 428
- UVA region 118
- UVB radiation 120
- -- short-wavelength 119
- UVC radiation 122
- -- short-wavelength 119
- white inkjet inks 73, 137
- unidirectional scanning 789
- unsintered powder 654
- upstream powder 594
- urethane acrylates 136
- UV. see ultraviolet (UV)

v
vacuum
-- deposition processes 640
-- low-pressure plasma 17, 515
-- plasma 526, 528
-- pumping system 480
-- wiping 480
valves 476
vaporization 187
vapor pressure 570
varnish 141
vascular endothelial growth factor (VEGF) 667
VersaDrop™ technologies 248, 581
-- characteristic of 242
-- tuning on drops 244
very large-scale integration (VLSI) 354
vinyl amides 136
N-vinylcaprolactam 136
vinyl ether monomer 136
vinyl sulfone groups
-- chlorotrazine, reaction pathway 170
viscosity 8, 33, 155, 545
-- measurements 494
-- polymers 656
-- vs. concentration 202
-- vs. temperature 202
volatile organic compound (VOCs) 137, 182
volatile solvents (VOC) 129
voltage waveforms 288
volume resistivity 206
Vutek 26
w
wafers per hour (wph) 854
wafer technology 524
wall tile 763
water-based
- colorants 755
- glazes 769
- inks 755
- PEDOT ink 612
- PEDOT layer 613
- UV inkjet inks 109
- formulations 111
water contact angles 248
waterfall printhead technology 335
water-soluble acylphosphine oxide photoinitiators 109
water-soluble bisacylphosphine oxide photoinitiators 109
waveform 152
- operation 292
- optimization 445
wax candle 17, 509
web 466
- cleaning device 731
- confirming 571
- digital printing systems 735
- lead principle 844
- temperature 573
- infrared drying in of convective heating 574
- weave error 587
- webbing-up devices 843
- web-fed print 42
Weber numbers (We) 665
- vs. Reynolds numbers, parametric plot of 665
wet-in-wet 488
wet milling 761–763
wet-on-dry printing 140
wet printing 755
wettability 860
- glass surface 398
wetting 378
- behavior of liquids 510
white light interferometer profiles 641
wide-format multipass printing 805
wood fibers 364
wood-grain defects 592, 595
wrong wipes 276

x
Xaar 126
- End Shooters 307
- printheads, prototypes of 307
Xaar 501 297
- ink recirculation arrangement 298
Xaar 1001
- family-based industrial printing machines 299
- printheads 822
- - family 296, 297, 309
- - side-shooter 823
Xaar 1002
- printheads 300
- - in grayscale operation 291
- - ink recirculation arrangement 296
Xaar 1003
- HSS1003, Head Personality Card 486
- printhead 309
- - HSS1003 486
- - PZT walls 289
- side shooter channel array 290
Xaar 5601
- performs 166
- printhead 304, 307
Xaar 128 actuator, monolithic cantilever structure 288
Xaar Hydra 860
- Ink Supply System 299
- modification 861
Xaar-like end-shooter design 255
Xaar Print Bar System 300, 308
Xaar printhead 285, 291, 294, 308, 774
- technology 296
Xaar's End Shooter printhead designs 288
Xaar shared-wall technique 264
Xaar's inkjet printing technology 285
- additional waveform features 293
- Chevron Architecture 289
- cuts 294
- edge-mounted side shooter architecture 11, 296
- hybrid side shooter architecture 295
- hydra ink supply 299
- inkjet applications and development 306
- ink recirculation (TF) technology 297
- MEMS drop ejectors, with thin film piezoelectric actuators 301
- monolithic cantilever architecture 287
- nonprinting pulses 293
- overview 285
- piezoelectric shear mode 285
- pre- and postpulses 294
- print bar system 300
- shared wall design 287
- three-cycle acoustic firing 289
– trimming 295
– waveform 291
– Xaar’s 5601 MEMS drop ejector 301
 08/2008 Xaar skyscraper test rig 808
 Xaar’s technology development 286
 Xaar’s unique TF Technology 297
– Xaar waveform 292
– Xaar XJ126-200 printhead 422
– Xennia 605
– XJ128 288
 – 18 XJ128 actuators per wafer 287
– X-ray shielding 550
– X-ray tube 551, 552

\[
\text{y}
\]
Young’s modulus 860
YouTube clip, customer installation 746

\[
\text{z}
\]
ZERO DUR® glass ceramic 404
Zero velocity 324
Zinc–tin oxides 318
zirconium silicate 157
ZnO nanoparticle suspension 612
ZnS single shell 235
Zonyl® FS-300 228