Contents

List of Contributors

1
Crystallization: Introduction 1
Wolfgang Beckmann

2
Mechanisms of Crystallization 7
Wolfgang Beckmann

2.1
Crystal Lattice 7
2.1.1
Arrangement of Building Blocks and Symmetries 7
2.1.2
Unit Cell 9
2.1.3
Miller Indices to Describe Crystal Faces 11
2.1.4
Lattice Defects 12
2.1.5
Equilibrium, Growth, and Dissolution Form of Crystals 14
2.1.6
Morphology and Habit 16
2.2
Nucleation of Crystals 17
2.2.1
Mechanism of Primary Nucleation 18
2.2.2
Metastable Zone and Induction Time for Nucleation 20
2.2.3
Form Crystallized: Ostwald’s Law of Stages 25
2.3
Growth and Growth Rate of Crystals 25
2.3.1
Kink Position and F, S, and K Faces 26
2.3.2
Growth of Ideal Crystals 27
2.3.3
Growth of Real Crystals 28
2.3.4
Transport Phenomena 32
Further Reading 33

3
Solubility and Solution Equilibria in Crystallization 35
Heike Lorenz

3.1
Phase Equilibria and Phase Diagrams: General Issues 36
3.1.1
Phases, Phase Rule, and Binary Systems 36
3.1.2
Melt and Solution Equilibria 38
3.1.3
Thermodynamic Description of SLE: Liquidus Curve in the Phase Diagram 39
3.1.4
Phase Diagrams of Ternary and Quaternary Systems 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Melt Phase Diagrams</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Types of Phase Diagrams and Their Occurrence</td>
<td>44</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Measurement of Melt Phase Diagrams</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Methods</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>DSC and How to Measure and Interpret DSC Data</td>
<td>47</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Example of a Diastereomeric System</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Solution Equilibria</td>
<td>53</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Solubility and Concentration Units</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Solubility Curves of Inorganic and Organic Substances</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Inorganic Substances</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Organic Substances</td>
<td>57</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Solvates, Polymorphs, and Cocrystals</td>
<td>58</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Influence of Solvents and Impurities</td>
<td>60</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Measurement of Solubilities and Corroboration</td>
<td>62</td>
</tr>
<tr>
<td>3.3.5.1</td>
<td>Ensuring Equilibrium Conditions</td>
<td>63</td>
</tr>
<tr>
<td>3.3.5.2</td>
<td>Excess Method as a Classical Isothermal Method</td>
<td>64</td>
</tr>
<tr>
<td>3.3.5.3</td>
<td>Polythermal Measurements</td>
<td>65</td>
</tr>
<tr>
<td>3.3.5.4</td>
<td>Prediction and Correlation of Solubilities</td>
<td>67</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Oiling-Out</td>
<td>68</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Ternary Solution Equilibria: Case of Enantiomers</td>
<td>70</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Quaternary Systems: Case of Reciprocal Salt Pairs</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>Agglomeration during Crystallization</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Beckmann</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Mechanisms and Kinetics of Agglomeration</td>
<td>75</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Process of Agglomeration</td>
<td>75</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Kinetics of Agglomeration</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Parameters Influencing Agglomeration</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Agglomeration during Crystallization</td>
<td>80</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Agglomeration during Crystallization</td>
<td>80</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Spherical Agglomeration</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>Mechanical Properties of Agglomerates</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>Polymorphism of Crystalline Systems</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Rolf Hilfiker</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction and Definitions</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Occurrence and Properties of Polymorphs and Solvates</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Thermodynamics of Polymorphs of Solid-State Forms</td>
<td>87</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Basics</td>
<td>87</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Energy–Temperature Diagrams</td>
<td>88</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Rules to Predict Thermodynamic Relationships</td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Thermodynamics of Hydrates</td>
<td>91</td>
</tr>
<tr>
<td>5.5</td>
<td>Experimental Techniques to Elucidate Thermodynamics</td>
<td>94</td>
</tr>
</tbody>
</table>
5.5.1 DSC 94
5.5.2 Suspension Equilibration 94
5.5.3 Solubility Measurements 95
5.5.4 Other Methods 96
5.6 Formation of Various Polymorphs and Solid-State Forms-Polymorph Screens 97
5.6.1 Principles 97
5.6.2 Crystallization Methods and Choice of Solvent 99
5.6.3 Types of Polymorph Screens 100
5.7 Selection of Optimal Form for Development 101
Symbols 102
References 102

6 The Influence of Additives and Impurities on Crystallization 105
Christiane Schmidt, Matthew J. Jones, and Joachim Ulrich
6.1 Influence of Additives and Impurities on Crystallization 105
6.1.1 Solubility 105
6.1.1.1 Common Ion Effect 106
6.1.1.2 Thermodynamic Basis of Solubility and the Influence of Additives 106
6.1.1.3 Complex Formation 106
6.1.2 Rate of Nucleation and Crystal Growth 107
6.1.2.1 Nucleation Rates 107
6.1.2.2 Crystal Growth Rates 111
6.1.3 Habit Modification 114
6.2 Influence of Impurities: Modeling 116
6.2.1 Calculating Crystal Habit 116
6.2.1.1 Surface Energy Model 117
6.2.2 Molecular Modeling 118
6.2.3 Modeling of Additives 120
6.3 Tailor-Made Additives 122
6.4 Modeling the Influence of Solvents 122
References 124

7 Purification by Crystallization 129
Heike Lorenz and Wolfgang Beckmann
7.1 Introduction 129
7.2 Mechanisms of Impurity Incorporation and Purification 131
7.2.1 Solubility in the Solid State 132
7.2.2 Fractional Crystallization 133
7.2.3 Inclusion and Surface Adsorption of Impurities 134
7.2.4 Influence of Crystallization Conditions 136
7.2.4.1 Product Yield 136
7.2.4.2 Crystallization Technique and Rate of Crystallization 137
7.2.4.3 Solvent Applied 139
7.2.4.4 Mixing 142
<table>
<thead>
<tr>
<th>7.2.5 Downstream Processes</th>
<th>142</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.5.1 Solid–Liquid Separation and Sweating</td>
<td>143</td>
</tr>
<tr>
<td>7.2.5.2 Reslurrying and Washing</td>
<td>144</td>
</tr>
<tr>
<td>7.2.6 Workflow to “Manage” Impurities in Process Development</td>
<td>146</td>
</tr>
</tbody>
</table>

References 147

8 Characterization of Crystalline Products 149

Rolf Hilfiker

8.1 Introduction 149
8.2 Characterization of Intrinsic Properties of a Solid 149
8.2.1 Crystal Structure 150
8.2.1.1 X-Ray Powder Diffraction (XRPD) 150
8.2.1.2 Vibrational Spectroscopy (Raman, IR, NIR, THz) 151
8.2.1.3 Solid-State NMR (ssNMR) 152
8.2.2 Thermodynamic Properties 154
8.2.2.1 Differential Scanning Calorimetry (DSC) 154
8.2.2.2 Isothermal Microcalorimetry 157
8.2.3 Composition 158
8.2.3.1 Thermogravimetry (TG, TG-FTIR, and TG-MS) 158
8.2.3.2 Dynamic Vapor Sorption (DVS) 158
8.3 Characterization of Particle Shape and Size 161
8.3.1 Particle Size Distribution: Characteristic Values and Graphs 161
8.3.2 Overview of Available Methods 162
8.3.2.1 Microscopy 163
8.3.2.2 Laser Light Diffraction 163
8.3.2.3 Sieving 165
8.4 Powder Flow Properties 165
8.5 In-Process Characterization 167
8.5.1 Turbidity 167
8.5.2 Raman 168
8.5.3 FBRM and PVM 169

References 171

9 Basics of Industrial Crystallization from Solution 173

Wolfgang Beckmann

9.1 Generation of Supersaturation in a Crystallizer 173
9.2 Mass and Population Balance for Growth from Suspension 176
9.2.1 Mass Balance 176
9.2.2 Population Balance 176
9.3 Operation of a Continuous Crystallizer: Basics 178
9.3.1 Concept and Design of Continuous Crystallizers 178
9.3.2 Mass Balance in a Continuous Crystallizer 178
9.3.3 Population Balance in a Continuous Crystallizer 178
9.3.4 Mean Particle Size 180
9.3.5 Secondary Nucleation 180
10 Development of Batch Crystallizations 187

Dierk Wieckhusen

10.1 Setting Goals 187
10.2 Crystallization of Organic Moieties 188
10.3 Generation of Supersaturation in Batch Crystallizations 189
 10.3.1 Cooling 189
 10.3.2 Use of Antisolvent 190
 10.3.3 Evaporation 191
10.4 Initiation of Crystallization – Nucleation Phase 192
10.5 Seeded Batch Crystallizations 193
 10.5.1 Seeding Strategy 194
 10.5.2 Designing a Seeding Process 194
 10.5.2.1 Quality of Seeds 195
 10.5.2.2 Quantity of Seeds 195
 10.5.2.3 Preparation of Seeds 196
 10.5.2.4 Supersaturation at the Start of Crystallization 197
 10.5.2.5 Holding Time After Seeding 197
10.6 Crystallization Period 197
10.7 Scale-Up Considerations 198
 10.7.1 Process Time – Rate of crystallization 198
 10.7.2 Stirring 199
10.8 Manipulating Particle Shape 200

11 Continuous Crystallization 203

Günter Hofmann and Christian Melches

11.1 Concept and Design of Continuous Crystallizers 204
 11.1.1 Importance of Secondary Nucleation 204
 11.1.2 Control of Supersaturation 205
 11.1.3 Adjustment of the Granulometry – Mean Crystal Size and Crystal Size Distribution 209
 11.1.4 Energy Input and Retention Time 212
 11.1.5 Which Type of Crystallizer to Select? 215
 11.1.6 Seeding of DTB and Oslo Crystallizers 216
11.2 Various Continuous Crystallizers 218
 11.2.1 FC Group 218
 11.2.2 DTB Group 220
 11.2.3 Group of Fluidized Bed Crystallizers 222
 11.2.4 Comments on Population Balance and Modeling 223
11.3 Periphery 226
11.4 Special Features of the Process 229
11.4.1 Surface Cooling Crystallization 229
11.4.2 Vacuum Cooling Crystallization 230
11.4.3 Vacuum Evaporation Crystallization 230
11.5 Adjustment of Suspension Densities 232

References 233

12 Precipitation 235
Wolfgang Beckmann
12.1 Precipitation from Solution by Mixing Two Streams 235
12.1.1 Devices and Mixing Schemes 235
12.2 Semi-Batch Precipitations 236
12.3 Model of Mixing during Precipitation 238
12.4 Precipitations Using Supercritical Fluids 239
12.5 Crystal Issues 241
12.5.1 Polymorphism of Precipitates 241
12.5.2 Crystal Perfection 243
12.5.3 Agglomeration 244
12.6 Particle Size as a Function of Operating Conditions 244

13 Mixing in Crystallization Processes 247
Bernd Nienhaus
13.1 Mixing in Batch and Continuous Crystallization Processes 247
13.2 Basic Mixing Tasks – Mixing Tasks in Crystallization 248
13.3 Impellers and Agitation Systems 249
13.3.1 General Overview and Selection Criteria 250
13.3.2 Axial Impellers 250
13.3.2.1 Propeller 250
13.3.2.2 Pitched Blade Turbine 250
13.3.2.3 Helical Ribbon Impeller 252
13.3.3 Radial Impellers 252
13.3.3.1 Flat Blade Disk Turbine 252
13.3.3.2 Disperser Disk 252
13.3.4 Tangential Impellers 253
13.4.1 Diameter Ratio 255
13.4.2 Bottom Clearance 256
13.4.3 Filling Level 256
13.4.4 Multistage Impellers 256
13.5 Blending 256
13.5.1 Degree of Homogeneity 256
13.5.2 Turbulent Blending 257
13.5.3 Significance of Circulation Rate 258
13.5.4 Laminar Blending 258
13.6 Suspending 259
13.6.1 Suspending Criteria and Different States of Suspension 259
13.6.2 Power Requirement for the Suspension of Solids 262
13.6.3 Models and Mechanisms for the Suspension of Solids 263
13.6.4 Determination of the Shaft Speed Necessary for Suspending 264
13.6.4.1 Physical Parameters of Liquids and Solids 265
13.6.4.2 Solids Concentration 265
13.6.4.3 Geometry 266
13.6.5 Distribution of Solids 266
13.6.6 Influence on Mass Transfer 267
13.6.7 Influence on Blend Times 267
13.7 Scale-Up of a Crystallization Process 268
13.7.1 Model Tests 269
13.7.2 “Scale-Up” Rules 270
13.7.3 Blending 270
13.7.4 Suspension 270
13.7.5 Dispersing 271
13.7.6 Heat Transfer 272
13.7.7 Special Scale-Up Considerations 272
13.7.8 Summary 273
References 273

14 Downstream Processes 275
Dierk Wieckhusen and Wolfgang Beckmann
14.1 Transfer of Suspension and Filter Cake 275
14.2 Solid–Liquid Separation 275
14.2.1 Cake Forming Filtration 276
14.2.2 Centrifugation 277
14.2.3 Characterization of Filterability in the Laboratory 277
14.2.4 Improving Filterability 278
14.2.5 Washing 280
14.3 Drying 280
14.3.1 Phases of the Drying Process 281
14.3.2 Drying of Hydrates and Solvates 282
14.3.3 Characterizing the Drying Behavior in the Laboratory 284
14.3.4 Amorphization during Drying 284
14.3.5 Effect of Drying on the Particle Size Distribution 285
References 288

15 Melt Crystallization 289
Joachim Ulrich and Torsten Stelzer
15.1 Characteristics of Melt Crystallization 289
15.1.1 Definitions 289
15.1.2 Benefits of Melt Crystallization 290
15.2 Processes of Melt Crystallization 292
15.2.1 Solid Layer Crystallization 292
15.2.2 Suspension Crystallization 294
15.3 Postcrystallization Treatments 295
15.3.1 Sweating 297
15.3.2 Washing 298
15.3.3 Choices 299
15.3.4 Wash Columns 299
15.4 Laboratory Techniques 301
15.4.1 Bottle Test 301
15.4.2 Cold Finger Experiments 301
15.4.3 Zone Melting 303
References 304

16 Examples of Realized Continuous Crystallization Processes 305
Günter Hofmann and Christian Melches
16.1 Choosing the Drain Point in Process Design 305
16.2 Example Crop Crystallization for Organic Compounds 310
16.2.1 Fields of Application for the Crop Principle 310
16.2.2 Definition of Task 311
16.2.3 Selection of the Process Design 312
16.3 Example Crystallization of Table Salt 316
16.3.1 Introduction 316
16.3.2 Performance Requirements 318
16.3.3 Process Design 318
16.3.4 Description of the Plant Function 321
16.4 Results 323

17 Design Examples of Melt Crystallization 325
Joachim Ulrich and Torsten Stelzer
17.1 Concepts of Melt Crystallization 325
17.1.1 Solid Layer Crystallization 325
17.1.2 Suspension Crystallization 331
17.2 Outlook 334
References 335

Index 337