Contents

Preface—Volume 2: Multiparametric Model-Based Control xi
References xvi
List of Authors xvii

Part I Theory 1

1 Linear Model Predictive Control via Multiparametric Programming 3
 1.1 Introduction 3
 1.1.1 Multiparametric Programming 4
 1.1.2 Model Predictive Control 5
 1.2 Multiparametric Quadratic Programming 7
 1.2.1 Definition of CRrest 11
 1.3 Numerical Example 13
 1.4 Computational Complexity 16
 1.4.1 Computational Time 19
 1.5 Extensions to the Basic MPC Problem 20
 1.5.1 Reference Tracking 20
 1.5.2 Relaxation of Constraints 21
 1.5.3 The Constrained Linear Quadratic Regulator Problem 22
 1.6 Conclusions 22
 References 22

2 Hybrid Parametric Model-Based Control 25
 2.1 Introduction 25
 2.2 The Explicit Control Law for Hybrid Systems via Parametric Programming 26
 2.2.1 General Hybrid Systems 26
 2.2.2 Piecewise Linear Systems 29
 2.3 The Explicit Control Law for Continuous Time Systems via Parametric Programming 36

Multi-Parametric Model-Based Control. Edited by E. Pistikopoulos, M. Georgiadis, and V. Dua
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31692-2
Contents

2.3.1 Problem Formulation 36
2.3.2 Stability Requirements 36
2.3.3 Solution Procedures 38
2.3.4 Illustrative Process Example 2.3 39
2.3.5 Illustrative Biomedical Process Example 2.3.2 42
2.3.6 Illustrative Mathematical Example 2.3.3 44
2.4 Conclusions 45
References 47

3 Robust Parametric Model-Based Control 49
3.1 Introduction 49
3.2 Robust Parametric Model-Based Control for Systems with Input Uncertainties 50
3.2.1 Open-Loop Robust Parametric Model Predictive Controller 50
3.2.2 Parametric Solution of the Inner Maximization Problem 52
3.2.3 Closed-Loop Robust Parametric Model-Based Control 54
3.2.4 Reference Tracking Robust Parametric Model-Based Controller 58
3.2.5 Example—Two State MIMO Evaporator 59
3.3 Robust Parametric Model-Based Control for Systems with Model Parametric Uncertainties 62
3.3.1 MPC of Parametric Uncertain Linear Systems 62
3.3.2 Uncertain Matrices 65
3.3.3 The Robust Counterpart Problem 67
3.3.4 Example of Two-Dimensional Linear Parametric Uncertain System 73
3.4 Conclusions 74
References 75

4 Parametric Dynamic Optimization 77
4.1 Introduction 77
4.2 Solution Procedure—Theoretical Developments for mp-DO 78
4.2.1 Control Vector Parametrization 79
4.2.2 Parameter Representation 79
4.2.3 Problems Without Path Constraints 80
4.2.4 Problems with Path Constraints 82
4.3 Illustrative Examples 87
4.3.1 Example 1: Exothermic CSTR 87
4.3.2 Example 2: Fluidized Catalytic Cracking Unit 93
4.4 Software Implementation Issues 96
4.5 Concluding Remarks 97
Appendix A. Critical Parameter Values in Path Constraints 98
Appendix B. Solution Properties of the mp-DO Algorithm 101
Appendix B.2. Solution of a Semiinfinite Program 101
Acknowledgment 102
References 102

5 Continuous-Time Parametric Model-Based Control 105
5.1 Introduction 105
5.1.1 Linear Continuous-Time MPC 106
5.1.2 Implicit MPC 107
5.2 Multiparametric Dynamic Optimization 108
5.2.1 Optimality Conditions 108
5.2.2 Parametric Control Profile 110
5.2.3 Algorithm for Solving the mp-DO Problem 115
5.3 Control Implementation 117
5.4 Comparison Between Continuous-Time and Discrete-Time MPC 118
5.5 Examples 119
5.5.1 Example of a SISO System with One State 119
5.5.2 Example of a SISO System with Two States 123
5.6 Extension to Nonlinear Problem 126
5.6.1 Example 129
5.7 Conclusions 130
References 131

Part II Applications 133

6 Integration of Design and Control 135
6.1 Introduction 135
6.1.1 Process and Control Design Using Advanced Control Schemes 138
6.1.2 Simultaneous Design and Control Under Uncertainty Framework 138
6.1.3 Mixed-Integer Dynamic Optimization 140
6.2 Problem Formulation 143
6.3 Theoretical Developments—Solution Procedure 145
6.3.1 Problem Reformulation 145
6.3.2 Decomposition Approach for Process and Control Design—Algorithm 6.2 147
6.3.3 Modeling Aspects of the Parametric Controller 155
6.3.4 Disturbance Rejection 155
6.3.5 Control Structure Selection 156
6.4 Process Example 6.2—Evaporation Process 156
6.4.1 Objective Function 157
Contents

6.4.2 Inequality Constraints 157
6.4.3 Disturbances 158
6.4.4 Decision Variables 158
6.5 Process Example 6.3—Distillation Column 160
6.5.1 Problem Formulation 160
6.6 Computational Times and Software Implementation Issues 167
6.7 Conclusions 168
References 168

7 Model-Based Control of Blood Glucose for Type 1 Diabetes 173
7.1 Introduction 173
7.2 Model Predictive Control for Type 1 Diabetes 175
7.3 Explicit Insulin Delivery Rate 177
7.4 Inter- and IntraPatient Variability 183
7.5 Multiobjective Blood Glucose Control 188
7.5.1 Asymmetric Objective Function 188
7.5.2 Constraint Prioritization 191
7.6 Concluding Remarks 194
Acknowledgments 196
References 196

8 Control of Anesthesia 197
8.1 Introduction 197
8.2 Compartmental Model for Anesthesia 200
8.2.1 Pharmacokinetic Modeling of Anesthesia 200
8.2.2 Pharmacodynamic Modeling of Anesthesia 202
8.2.3 Baroreflex 205
8.3 Validation of the Compartmental Model for Anesthesia 207
8.4 Model-Based and Parametric Control of Anesthesia 211
8.5 Concluding Remarks 214
References 215

9 Model-Based Control of Pilot Plant Reactor 217
9.1 Introduction 217
9.2 Description of the Reactor 218
9.2.1 Reactor Simulation 221
9.3 Planning Experiments: Steady-State Reactor Behavior 221
9.4 Derivation of the Explicit Model-Based Control Law 224
9.5 Results 225
9.5.1 Implementation of the Parametric Controller 226
9.6 Concluding Remarks 228
References 229
10 MPC on a Chip 231
10.1 Introduction 231
10.2 Automatic Control: History and Present 231
10.2.1 Proportional Integral Derivative Control 233
10.2.2 Model-Based Predictive Control 233
10.3 Parametric MPC 235
10.3.1 Online Optimization via Off-Line Optimization 236
10.4 Putting Theory into Practice 238
10.4.1 A Parametric MPC Controller for the PARSEX Pilot Plant 238
10.4.2 Parametric MPC for an Air Separation Unit 240
10.4.3 An Automotive Example—pMPC for an Active Valve Train Actuation System 243
10.5 Blood Glucose Control for Type 1 Diabetes 248
10.6 Conclusions 252
References 253

Index 255