Index

Note: Page references in *italics* refer to Figures; those in **bold** refer to Tables

χARM/SIRM ratios 101–2, 105
χARM/χ 105
χARM/χfd 105

Adirondak Mountains, New York 100
Alleghanian-age deformation 85
Alleghanian orogeny 14
Alleghanian Plateau 76
Allentown Formation, Pennsylvania 87–8
alternating field demagnetization 126, 128
aluminum-in-hornblende paleobathymetric technique 3
Amana Formation 12
Andreas Formation 9
anisotropy-inclination corrections for hematite-bearing rocks 53–5
next generation 53
propagating errors 59–60
test 51–3
anisotropy of isothermal remanence (AIR) 56, 57, 59
anisotropy of magnetic remanence (AMR) 10
anisotropy of magnetic susceptibility (AMS) 10, 24, 43, 45, 48, 49, 51, 52, 53, 56–7, 57, 59, 72, 74, 75–6, 89, 91, 129
anisotropy remanent magnetization (ARM) 48–51, 52, 96
anisotropy of anhysteretic remanence (AAR) 21, 43, 100
antiferromagnetism 95

Appalachian fold belt 84
apparent polar wander path (APWP) 55–6
Arguis Formation, Spain 69, 114, 117–19, 120, 121
ARM/IRM ratio 97
ARM/SIRM ratio 75, 100, 101, 107, 107, 108, 115, 116, 121
ARM/χ ratios 97, 101, 115
baked contact test 126, 130
bacterially controlled mineralization (BCM) 103
bacterially induced mineralization (BIM) processes 103
Baikal, Lake 114
Baja BC controversy 53
Bcr/Bc ratios 97
bedding error correction 24, 25
Belden Formation, Colorado 79
Bermuda Rise, North Atlantic Ocean 6, 6, 7, 32, 32
Big Moose Lake 100
Bingham statistics 128
biogenic magnetic minerals formation, Lake Ely 103–12, 104, 106, 107, 108, 109–10, 112, 113
biologically organized mineralization (BOM) processes 103
bioturbation 27
blocking volume 66
Bloomburg Formation 9, 88–9, 88, 89, 92
Bonneteer Dolomite 75
Brownian motion 17, 18, 18, 22
Brunhes-Matayama polarity transition 2
burial compaction 10, 11–12
burial diagenesis 78–9
Cala Viola, Sardinia 72
calcite 2, 53, 79, 90, 93, 96
Catskill Formation, deltaic rocks 9
characteristic remanent magnetization (ChRM) 126, 129, 130
chemical demagnetization 56–7, 58, 72, 129
chemical remanent magnetization (CRM) 10, 12, 14, 16, 19, 41, 43, 66–80
Chinle Formation 9
Chugwater Formation, Montana 79
Cimon Forcellone 120, 122
Cimon Latemar 121, 122
coaXial strain 82–3, 83
pure shear 90
simple 90
coercivity 12, 35, 48, 53, 94, 95
Colorado Plateau 51
compaction-shallowed inclination 46–65
conglomerate test 67, 130
contact test, alternating field demagnetization 67
Cupido Formation, Mexico 102, 114, 116–17, 117, 119
Curie temperature for magnetite 98

© 2012 Kenneth P. Kodama. Published 2012 by Blackwell Publishing Ltd.
Day plot 97
depositional (detrital) remanent magnetization (DRM) process 4–5
deposition on a sloping bed and from a current 24–5, 24
every evidence of 5–9
equation 16–18
in hematite-bearing rocks 19–22
laboratory re-deposition experiments 23–4
for magnetite-bearing rocks 16–19
flocculation model 18–19
in red, continental sedimentary rocks 9–10
saturation 21
syn-depositional 25
tensor 59
Deseret Limestone, Utah 79
Desulfovibrio 67
diagenesis, definition 66
diagenesis, early, in terrestrial red bed sedimentary rocks 71–4
diagenesis, late, and remagnetization 74–9
basinal fluid flow during orogenesis 74–8
burial diagenesis and illitization 78–9
hydrocarbon migration and dolomitization 79
diamagnetic minerals 96
Dnieper River, Ukraine 73
Dome de Barrot 10
Donbas Fold Belt, Ukraine 43
DRM:IRM ratio 21
DRM:SIRM ratio 20, 21, 22
eccentricity 114
El Trebol, Lake 7
elongation-inclination (EI) correction technique 41, 46, 58, 61–5,
62
Ely, Lake 12
biogenic magnetic minerals
formation 103–12, 104, 106, 107, 108, 109–10, 112, 113
energy-dispersive spectrometry (EDS) 133
environmental magnetism 3–4, 94–9
environmental processes
detection 99–103
and DRM accuracy 103
ferromagnetic resonance (FMR) 111
ferromagnetism 12, 14, 95
first-order reversal curve (FORC diagrams) 97, 111
Fisher distribution 85, 127, 128
Fisher statistics 7, 51, 59, 127–8
flexural/flow slip 82–3, 83, 85, 86
fold test 14, 67, 81, 84, 129–30, 133
FORC diagrams 97, 111
gemagnetic axial dipole (GAD) 1, 3, 42
Geomagnetic Polarity Time scale 117
Giles, Lake 100, 101
gracial-interglacial cycles 102
Glendale Formation 59
Glenshaw Formation, Pennsylvania 58, 59
goethite 96, 131, 132
Neel temperature 98
goethite to hematite ratio 99, 99
Gondwana 12
grain-scale strain 14–15, 93
Great Bahama Bank 41
greigite 67, 68, 69, 131
Hampshire Formation, West Virginia 76
Hawaii, lava flow eruptions 2
Helderberg Formation 75, 91
hematite 4, 9–10, 14, 15
coefficency 95
 crystal structure 95
particle-scale anisotropy 95
spontaneous magnetization 20
High field anisotropy of isothermal remanence (hf-AIR) 20
Hoh Xil Basin, Tibet 44
Holz Shale 21, 22
Holzmaar 8
Hurleg Lake, China 100
igneous rocks 5
CRM remagnetization 79
dip in 3
 paleohorizontal determination 3
paleomagnetism of 2, 51, 56
TRM for 16
see also large igneous province (LIP)
ilitization 78–9
importance of sedimentary paleomagnetism 1–3
inclination flattening, correcting for 65, 65
inclination shallowing 11–12, 22, 34–45
corrections for tectonostratigraphic terranes, W. N. America 49–51
early corrections 48–9
electrostatic sticking model (Deamer and Kodama) 35–6, 36, 38
45 degree IRM correction 60–1
in hematite-bearing rocks 43–5,
44
laboratory compaction experiments 34–40
laboratory correction experiments 40–1
in magnetite-bearing sediments and rocks 41–3, 42
microscopic model (Sun and Kodama) 39, 39
red bed 55–6
internal deformation of rocks during folding 85–7
iron oxide reduction 68
iron oxyhydroxides 73
iron-sulfate reduction diagenesis 67–71, 68, 70
isothermal remanent magnetization (IRM) 21–2, 42, 49, 58, 96, 131, 132
45 degree correction to inclination shallowing 60–1
Johnnie Formation, Rainstorm
Member 99
Jc/Jsat (squareness) 97
Kanthi bed, India 12
Kapusaliang Formation 44, 57, 61, 72
Karanak Group, Tajikistan 73
Kent distribution 128
Kerguelen Plateau 104
Kiaman age remagnetization 74–8
Knox Dolomite 76
Kuban River, Russia 73
Lacawac, Lake 100, 101
Ladd Formation 21, 40
lake sediment environmental magnetism 99–101
Langevin description of Brownian motion 17, 18, 18
large igneous province (LIP) 61, 63
laser selective demagnetization (LSD) 129
Latemar controversy 102, 119–22
Latemar cycles 116
Laurasia 12
Lch Lomond 7
Lockatong Formations, Newark 9
London Clay Formation, Sheppey 42
loss-on-ignition (LOI) measurements 107
Lowrie test 98, 131–2
maar lakes, Germany, paleosecular variation in 7–8, 8
mackinawite 69
maghemite 87, 130
magnetic anisotropy-inclination correction 46–8, 47, 48
magnetic field, variability in 5
magnetic mineral composition 95–7
magnetic mineral grain (magnetic particle) size 97
magnetic mineralogy 98, 130–3
laboratory tests 131–3
magnetic parameter ratios 99
magnetite 4, 9, 12, 14, 15, 67, 130, 132
coercivity 95
crystal structure 95
magnetic remanence fabrics 21
particle-scale anisotropy 95
red bed 56–8
magnetic inclination shallowing 55–6
remanent magnetic direction, accuracy of 133–4
simplification correction of 58–9
paleomagnetic determination 3
paleomagnetic direction, accuracy of 133–4
paleomagnetic sampling interval 115
remanent magnetization rotation during folding 85–7
in the field 87–90
reversal test 67
Rf–φ (center-to-center) technique 83, 84, 88, 89, 133
rigid particle rotation 84, 88–9
Río Sacuz 122
rock magnetic cyclostratigraphy 4, 112–16
rock magnetic sampling interval 115
rock magnetometer 95
rock type 124–5
S-ratio 98, 99, 100, 101, 107, 115
Salt Pond, Massachusetts 104
sampling scheme 125–6
San Andreas fault 65
Santa Barbara basin 48
Sapelo Island, Georgia 47
Saturation isothermal remanent magnetization (SIRM) 20–1, 98, 105
Schalkenmehrener Maar 8
secondary growth of magnetic minerals, and tectonic strain 10
sediment accumulation rates 2
Sespe Formation 65
Shafer, Colorado Plateau 15
Shale Springs Formation 21
Shiprock Formation 21, 22, 23, 27, 49
Shinko Formation 45
shortening strain 91
spontaneous magnetization 20
magnetosomes 104–7
Magnetospirillum 105
magnetostrophication, sampling for 125–6
magnetotactic bacteria 103–4
Mangli beds, India 12
March strain 84
Maringouin Formation, Canada 58
Martinsburg Formation 91
Matuyama-Brunhes polarity transition boundary (MBB) 29–31, 30 or Brunhes-Matuyama (BMM) p. 30?
Mauch Chunk Formation 9, 57, 58, 60, 72, 88–9, 90, 92, 127
Meerfelder Maar 8
Milankovitch cycles 102, 112–14, 115, 116, 117, 118, 121
Moenave Formation, Colorado Plateau 9
Moenkopi red beds 24
Mono Lake geomagnetic excursion 7, 9
Montour Ride, Pennsylvania 92
Nacimiento Formation 21, 40, 51, 52, 53, 64
Nanaimo Group 53
natural remanent magnetizations (NRMs) 6, 95
Neel temperature for hematite 98
Newark Basin 64, 114
Nijmegen, Holland 59
non-coaxial strain 90
Northumberland Formation 21, 59
Nucaleena Formation 45
Nyquist frequency 115
obliquity 114
Ocean Drilling Program (ODP) 7, 93
Onondaga Limestone, AMS fabric 74, 75
oroclines 91–3, 92
oxic-anoxic interface (OAI) 103, 105
paleohorizontal determination 3
paleomagnetic direction, accuracy of 133–4
paleomagnetic sampling interval 115
post-deformation remanence 91
post-depositional diagenesis 66–80
post-depositional remanent magnetization (pDRM) 11, 18, 22, 26–32, 49
acquisition mechanism 28–30, 32
in natural sediments 29–32
‘lock-in depth’ 28–9, 32
post-folding magnetization 82
Poterro Chico, Mexico 116
Poterro García, Mexico 116, 117
Pozo Formation, California 72
precession 14
pre-folding magnetization 81, 82, 91
principal component analysis 67
pseudo-single domain (PSD) 97
pure shear strain 82, 83
pyrrhotite 67, 68, 69, 130, 131
hexagonal 69
monoclinic 69
Quaidam Block, China 45
quartz 96
Quottoon plutonic complex, British Columbia 3
red bed controversy 9–10, 55, 71
red bed inclination shallowing 55–6
reduction diagenesis 10, 12–13, s 111
remanent magnetization rotation during folding 85–7
in the field 87–90
reversal test 67
Rf–φ (center-to-center) technique 83, 84, 88, 89, 133
Rhenish Massif 78
rheologic particle rotation 84, 88–9
Rio Sacuz 122
rock magnetic cyclostratigraphy 4, 112–16
rock magnetic sampling interval 115
rock magnetometer 95
rock type 124–5
S-ratio 98, 99, 100, 101, 107, 115
Salt Pond, Massachusetts 104
sampling scheme 125–6
San Andreas fault 65
Santa Barbara basin 48
Sapelo Island, Georgia 27
saturation isothermal remanent magnetization (SIRM) 20–1, 98, 105
Schalkenmehrener Maar 8
secondary growth of magnetic minerals, and tectonic strain 10
sediment accumulation rates 2
Sespe Formation 65
Index 157

Shepody Formation, Canada 58, 60
Sicak Cermik geothermal field, Turkey 43
Sierra de los Barrientos, Argentina 45
Silurian Rose Hill Formation 76
simple shear strain 82, 83
Siwalik Group, Pakistan 23, 43–4, 56, 63
Siwalik River, Pakistan 10
Snowball Earth, Australia 60
Soan River 23, 40
specularite 71, 73
Springdale Group, red beds, Newfoundland 60
’squeegee tectonics’ 74
St Croix, Lake 8, 32, 32
standard laboratory measurements and analysis 126–9
stirred remanent magnetization 27
strain remagnetization 91
Stuart, Mount, batholith 3
susceptibility measurement 96, 97
Suweiyi Formation 21, 23, 40
Sweetgrass Arch, Montana 78
syn-depositional remanence 22–3, 27
syn-folding magnetizations 81, 82, 84, 85, 86–8, 87, 91, 129
tangent cylinder 2
tangential-longitudinal strain during folding 86, 87
Tarim Basin 44
tectonic strain 14–15
thermal demagnetization 67, 73, 73, 126, 128–9
thermal remanent magnetization (TRM) 16, 96
thermoviscous remanent magnetization (TVRM) 134–5
titano-magnetite 97
Tonoloway Formation 91
Varve counting 108
Verwey transitions 106
virtual geomagnetic poles (VGPs) 2, 5, 61
viscous remanent magnetization (VRM) 133–4
Vizcaino Peninsula 50–1, 51
Wargal and Chhidru Formation, Pakistan 12
water tank consolidometer (Hamano) 35, 38
Waynewood, Lake 100, 101
Wettstein’s equation 85, 90
White Lake, New Jersey 99, 100
Williams Formation 21
Wills Mountain 91
Wilson Creek Formation 7
Windermere, Lake 7
Wood Bay Formation 24
Yangtze River 102
Yellow River 102
Yezo Group, Hokkaido 42