Contents

Preface xvii
List of contributors xix

1 Introduction 1

Clair L. Alston, Margaret Donald, Kerrie L. Mengersen and Anthony N. Pettitt

1.1 Introduction 1
1.2 Overview 1
1.3 Further reading 8

1.3.1 Bayesian theory and methodology 8
1.3.2 Bayesian methodology 10
1.3.3 Bayesian computation 10
1.3.4 Bayesian software 11
1.3.5 Applications 13

References 13

2 Introduction to MCMC 17

Anthony N. Pettitt and Candice M. Hincksman

2.1 Introduction 17
2.2 Gibbs sampling 18

2.2.1 Example: Bivariate normal 18
2.2.2 Example: Change-point model 19

2.3 Metropolis–Hastings algorithms 19

2.3.1 Example: Component-wise MH or MH within Gibbs 20
2.3.2 Extensions to basic MCMC 21
2.3.3 Adaptive MCMC 22
2.3.4 Doubly intractable problems 22

2.4 Approximate Bayesian computation 24
2.5 Reversible jump MCMC 25
2.6 MCMC for some further applications 26

References 27

3 Priors: Silent or active partners of Bayesian inference? 30

Samantha Low Choy

3.1 Priors in the very beginning 30
3.1.1 Priors as a basis for learning 32
3.1.2 Priors and philosophy 32
3.1.3 Prior chronology 33
3.1.4 Pooling prior information 34
3.2 Methodology I: Priors defined by mathematical criteria 35
 3.2.1 Conjugate priors 35
 3.2.2 Impropriety and hierarchical priors 37
 3.2.3 Zellner’s g-prior for regression models 37
 3.2.4 Objective priors 38
3.3 Methodology II: Modelling informative priors 40
 3.3.1 Informative modelling approaches 40
 3.3.2 Elicitation of distributions 42
3.4 Case studies 44
 3.4.1 Normal likelihood: Time to submit research dissertations 44
 3.4.2 Binomial likelihood: Surveillance for exotic plant pests 47
 3.4.3 Mixture model likelihood: Bioregionalization 50
 3.4.4 Logistic regression likelihood: Mapping species distribution via habitat models 53
3.5 Discussion 57
 3.5.1 Limitations 57
 3.5.2 Finding out about the problem 58
 3.5.3 Prior formulation 59
 3.5.4 Communication 60
 3.5.5 Conclusion 61
Acknowledgements 61
References 61

4 Bayesian analysis of the normal linear regression model 66
 Christopher M. Strickland and Clair L. Alston
4.1 Introduction 66
4.2 Case studies 67
 4.2.1 Case study 1: Boston housing data set 67
 4.2.2 Case study 2: Production of cars and station wagons 67
4.3 Matrix notation and the likelihood 67
4.4 Posterior inference 68
 4.4.1 Natural conjugate prior 69
 4.4.2 Alternative prior specifications 73
 4.4.3 Generalizations of the normal linear model 74
 4.4.4 Variable selection 78
4.5 Analysis 81
 4.5.1 Case study 1: Boston housing data set 81
 4.5.2 Case study 2: Car production data set 85
References 88
7.3.2 Meta-analysis models 131
7.3.3 Computation 134
7.3.4 Results 134
7.3.5 Discussion 135
Acknowledgements 137
References 138

8 Bayesian mixed effects models 141
Clair L. Alston, Christopher M. Strickland,
Kerrie L. Mengersen and Graham E. Gardner

8.1 Introduction 141
8.2 Case studies 142
 8.2.1 Case study 1: Hot carcase weight of sheep carcases 142
 8.2.2 Case study 2: Growth of primary school girls 142
8.3 Models and methods 146
 8.3.1 Model for Case study 1 147
 8.3.2 Model for Case study 2 148
 8.3.3 MCMC estimation 149
8.4 Data analysis and results 150
8.5 Discussion 158
References 158

9 Ordering of hierarchies in hierarchical models: Bone mineral density estimation 159
Cathal D. Walsh and Kerrie L. Mengersen

9.1 Introduction 159
9.2 Case study 160
 9.2.1 Measurement of bone mineral density 160
9.3 Models 161
 9.3.1 Hierarchical model 162
 9.3.2 Model H1 163
 9.3.3 Model H2 163
9.4 Data analysis and results 164
 9.4.1 Model H1 164
 9.4.2 Model H2 165
 9.4.3 Implication of ordering 166
 9.4.4 Simulation study 166
 9.4.5 Study design 166
 9.4.6 Simulation study results 167
9.5 Discussion 168
References 168
9.A Appendix: Likelihoods 170
10 Bayesian Weibull survival model for gene expression data 171
Sri Astuti Thamrin, James M. McGree and Kerrie L. Mengersen

10.1 Introduction 171
10.2 Survival analysis 172
10.3 Bayesian inference for the Weibull survival model 174
 10.3.1 Weibull model without covariates 174
 10.3.2 Weibull model with covariates 175
 10.3.3 Model evaluation and comparison 176
10.4 Case study 178
 10.4.1 Weibull model without covariates 178
 10.4.2 Weibull survival model with covariates 180
 10.4.3 Model evaluation and comparison 182
10.5 Discussion 182
References 183

11 Bayesian change point detection in monitoring clinical outcomes 186
Hassan Assareh, Ian Smith and Kerrie L. Mengersen

11.1 Introduction 186
11.2 Case study: Monitoring intensive care unit outcomes 187
11.3 Risk-adjusted control charts 187
11.4 Change point model 188
11.5 Evaluation 189
11.6 Performance analysis 190
11.7 Comparison of Bayesian estimator with other methods 194
11.8 Conclusion 194
References 195

12 Bayesian splines 197
Samuel Clifford and Samantha Low Choy

12.1 Introduction 197
12.2 Models and methods 197
 12.2.1 Splines and linear models 197
 12.2.2 Link functions 198
 12.2.3 Bayesian splines 198
 12.2.4 Markov chain Monte Carlo 204
 12.2.5 Model choice 206
 12.2.6 Posterior diagnostics 207
12.3 Case studies 207
 12.3.1 Data 207
 12.3.2 Analysis 208
13 Disease mapping using Bayesian hierarchical models 221
Arul Earnest, Susanna M. Cramb and Nicole M. White

13.1 Introduction 221
13.2 Case studies 224
 13.2.1 Case study 1: Spatio-temporal model examining
 the incidence of birth defects 224
 13.2.2 Case study 2: Relative survival model examining
 survival from breast cancer 225
13.3 Models and methods 225
 13.3.1 Case study 1 225
 13.3.2 Case study 2 229
13.4 Data analysis and results 230
 13.4.1 Case study 1 230
 13.4.2 Case study 2 231
13.5 Discussion 234
References 237

14 Moisture, crops and salination: An analysis of a
three-dimensional agricultural data set 240
Margaret Donald, Clair L. Alston, Rick Young
and Kerrie L. Mengersen

14.1 Introduction 240
14.2 Case study 241
 14.2.1 Data 242
 14.2.2 Aim of the analysis 242
14.3 Review 243
 14.3.1 General methodology 243
 14.3.2 Computations 243
14.4 Case study modelling 243
 14.4.1 Modelling framework 243
14.5 Model implementation: Coding considerations 246
 14.5.1 Neighbourhood matrices and
 CAR models 246
 14.5.2 Design matrices vs indexing 246
14.6 Case study results 247
14.7 Conclusions 249
References 250
15 A Bayesian approach to multivariate state space modelling: A study of a Fama–French asset-pricing model with time-varying regressors
Christopher M. Strickland and Philip Gharghori

15.1 Introduction 252
15.2 Case study: Asset pricing in financial markets 253
15.2.1 Data 254
15.3 Time-varying Fama–French model 254
15.3.1 Specific models under consideration 255
15.4 Bayesian estimation 256
15.4.1 Gibbs sampler 256
15.4.2 Sampling Σ_e 257
15.4.3 Sampling $\beta_{1:n}$ 257
15.4.4 Sampling Σ_α 259
15.4.5 Likelihood calculation 260
15.5 Analysis 261
15.5.1 Prior elicitation 261
15.5.2 Estimation output 261
15.6 Conclusion 264
References 265

16 Bayesian mixture models: When the thing you need to know is the thing you cannot measure
Clair L. Alston, Kerrie L. Mengersen and Graham E. Gardner

16.1 Introduction 267
16.2 Case study: CT scan images of sheep 268
16.3 Models and methods 270
16.3.1 Bayesian mixture models 270
16.3.2 Parameter estimation using the Gibbs sampler 273
16.3.3 Extending the model to incorporate spatial information 274
16.4 Data analysis and results 276
16.4.1 Normal Bayesian mixture model 276
16.4.2 Spatial mixture model 278
16.4.3 Carcase volume calculation 281
16.5 Discussion 284
References 284

17 Latent class models in medicine
Margaret Rolfe, Nicole M. White and Carla Chen

17.1 Introduction 287
17.2 Case studies 288
17.2.1 Case study 1: Parkinson’s disease 288
17.2.2 Case study 2: Cognition in breast cancer 288
17.3 Models and methods 289
 17.3.1 Finite mixture models 290
 17.3.2 Trajectory mixture models 292
 17.3.3 Goodness of fit 296
 17.3.4 Label switching 297
 17.3.5 Model computation 298
17.4 Data analysis and results 300
 17.4.1 Case study 1: Phenotype identification in PD 300
 17.4.2 Case study 2: Trajectory groups for verbal memory 302
17.5 Discussion 306
References 307

18 Hidden Markov models for complex stochastic processes: A case study in electrophysiology 310
Nicole M. White, Helen Johnson, Peter Silburn, Judith Rousseau and Kerrie L. Mengersen

18.1 Introduction 310
18.2 Case study: Spike identification and sorting of extracellular recordings 311
18.3 Models and methods 312
 18.3.1 What is an HMM? 312
 18.3.2 Modelling a single AP: Application of a simple HMM 313
 18.3.3 Multiple neurons: An application of a factorial HMM 315
 18.3.4 Model estimation and inference 317
18.4 Data analysis and results 320
 18.4.1 Simulation study 320
 18.4.2 Case study: Extracellular recordings collected during deep brain stimulation 323
18.5 Discussion 326
References 327

19 Bayesian classification and regression trees 330
Rebecca A. O’Leary, Samantha Low Choy, Wenbiao Hu and Kerrie L. Mengersen

19.1 Introduction 330
19.2 Case studies 332
 19.2.1 Case study 1: Kyphosis 332
 19.2.2 Case study 2: Cryptosporidium 332
19.3 Models and methods 334
 19.3.1 CARTs 334
 19.3.2 Bayesian CARTs 335
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.2.1</td>
<td>MCMC methods and implementation</td>
<td>424</td>
</tr>
<tr>
<td>25.2.2</td>
<td>Normal linear Bayesian regression model</td>
<td>433</td>
</tr>
<tr>
<td>25.3</td>
<td>Empirical illustrations</td>
<td>437</td>
</tr>
<tr>
<td>25.3.1</td>
<td>Example 1: Linear regression model – variable</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>selection and estimation</td>
<td></td>
</tr>
<tr>
<td>25.3.2</td>
<td>Example 2: Loglinear model</td>
<td>441</td>
</tr>
<tr>
<td>25.3.3</td>
<td>Example 3: First-order autoregressive regression</td>
<td>446</td>
</tr>
<tr>
<td>25.4</td>
<td>Using PyMCMC efficiently</td>
<td>451</td>
</tr>
<tr>
<td>25.4.1</td>
<td>Compiling code in Windows</td>
<td>455</td>
</tr>
<tr>
<td>25.5</td>
<td>PyMCMC interacting with R</td>
<td>457</td>
</tr>
<tr>
<td>25.6</td>
<td>Conclusions</td>
<td>458</td>
</tr>
<tr>
<td>25.7</td>
<td>Obtaining PyMCMC</td>
<td>459</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>459</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>461</td>
</tr>
</tbody>
</table>