Subject Index

a
Ahmed body 309–317
Anisotropy tensor 213
Asmoo vehicle 321
Average 17–19
 conditional 18
 ensemble 18,113
 spatial 18
 time 17

b
Backscatter 35,37,65,260
Bottleneck effect 64
Boundary layer 167–199
 Blasius solution 167,171
 Clauser equilibrium parameter 176
 displacement thickness 170
 hairpins 188
 integral momentum balance 172
 intermittency 170
 log law 174
 momentum thickness 170
 outer layer 175
 overlap layer 176
 pockets 190
 pressure 197
 rotational markers 186
 streaks 180
 streamwise vortices 181
 structure 177–197
 structure identification 184
 thickness 170,174
 transition 168
 vortices 182
 wake function 177
 Buffer layer 141

C
Channel flow 135–156
 dissipation budget 149
 enstrophy budget 154
 kinetic energy budget 148
 log law 144
 Reynolds stress 138
 Reynolds stress budget 150
 similarity 141
 velocity moments 145
 viscous sublayer 142
 vorticity transport 130
 Clauser equilibrium parameter 176
 Closure, see Model
 Constitutive law 110
 Continuity equation 15
 Control volume analysis 36
 Correlation
 Gaussian longitudinal velocity 81
 longitudinal velocity 23,51,78
 time 28
 time auto 25
 transverse velocity 23
 triple velocity 22,52
 two-point velocity 22,88
 Cylinder flow 285

d
DDES 272
DES 271
DIA 101
Direct numerical simulation, see DNS
Dissipation 65
e equation 37–39, 74, 212
budget 149
enstrophy 87
intermittency 64
isotropic 36
length scale 55
of dissipation 84
rate 35, 49, 56
DNS 9
channel flow 137
cost 57
isotropic turbulence 63
scaling with Reynolds number 57
Drag coefficient 314
DrivAer model 317
e
Eddy turnover time 83, 84
Eddy viscosity 110
negative 122
EDQNM 101
Ejection event 118
Energy
\(K \) equation 33–37, 72, 212
\(\tau^{-10/7} \) decay law 104
\(\tau^{-1} \) decay law 84, 86
\(\tau^{-3/2} \) decay law 83
\(\tau^{-5/2} \) decay law 83
\(\tau^{-6/5} \) decay law 77, 86
cascade 65
decay 71–76
density function 28, 58
final period decay 75, 80, 96
internal 33
kinetic 33
LES 256
mean turbulent kinetic 33
redistribution 37, 40, 153
self-similar decay 77
spectrum 28, 58
spectrum equation 94–100
subgrid 257
transfer 58, 99
turbulent kinetic 19, 33
Enstrophy 154
blow up 88
dissipation 87
equation 43
Equilibrium
high Reynolds number 84
low Reynolds number 80
production-equals-dissipation 126, 262
states in isotropic decay 79
f
Filter 18, 252
grid 266
test 266
First law of thermodynamics 34
Fixed points 79
Flatness factor 21
Fourier
coefficients 25
cosine transform 29
cutoff filter 254
discrete transform 25
fast transform 30
series 25
transform 27, 28, 94, 97
Free shear flow 283
Frequency 28
angular 28
Friction velocity 115
FSM 273
g
Galilean invariance 224, 260
Gaussian random field 101
Generic conventional model 324
h
Homogeneous shear flow 122–128
i
IDDES 272
Inertial subrange 58–65
Instability
boundary layer 168
Kelvin–Helmholtz 4, 286, 298
Integral scale 55
Intermediate layer 141, 143
Internal energy 33
Subject Index

\(j \)
Jet flow 4, 292
 mean velocity 293
 Reynolds stress 295
 self-preserving 292

\(k \)
Kármán constant 144
Kármán–Howarth equation 92
Kinetic theory of gases 108
Kolmogorov
 \(k^{-5/3} \) law 58, 262
 \(t^{-10/7} \) decay law 104
 dissipation scale 55
Kurtosis 21

\(l \)
Large eddy simulation, see Model
Law of the wall 144
Leonard stress 260
Log law
 boundary layer 174
 channel 144
 pipe flow 159
Loitsianski integral 104

\(m \)
Mean free path 110
MFI 224
Microscale 55
Mixing layer 4, 298–304
 braid region 299
 chain link 300
 mean velocity 302
 oblique rollers 300
 Reynolds stresses 303
 roller/rib structure 299
 self-preserving 300
 structure 298
Mixing length theory 208
Mixing time 109, 110, 118
Model
 \(K-\omega \) 218
 \(K-\epsilon \) closure 111, 211
 \(K-\omega \) SST 314
 algebraic Reynolds stress 242
 alternative subgrid 265
 Baldwin–Lomax 210
 Cebeci–Smith 210
 DDES 272, 312
 DES 314
 detached eddy simulation 271
 development tools 222
 DIA 101
 dynamic 314
 dynamic subgrid 266
 eddy viscosity 207
 EDQNM 101
 elliptic relaxation 311
 EVM 205, 311
 flow simulation methodology 273
 hybrid LES/RANS 270, 319
 IDDES 272, 312, 318
 invariance properties 222
 IP 234
 LES 11, 251–278
 LRR 232
 Menter SST 219
 Menter SST hybrid 272
 mixed 261
 mixing length 208
 near-wall \(K-\epsilon \) 215
 near-wall RSE 240
 NLEVM 227
 non-linear \(K-\epsilon \) 229
 PANS 276
 Prandtl mixing length theory 111
 RANS 11, 31, 111, 203
 RDT 226
 realizability 226
 realizable \(K-\epsilon \) closure 211, 311
 Reynolds stress equation 229
 RNG \(K-\epsilon \) closure 211
 RSE transport 238
 RSM 311
 SA 312
 scale-adaptive simulation 277, 325
 Smagorinsky 209, 261, 314, 322
 SMC 239
 Spalart–Allmaras 221
 spectral vanishing viscosity 314
 SSG 234
 SST 312, 318
 turbulence 203
Model (contd.)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>URANS</td>
<td>243</td>
</tr>
<tr>
<td>variational multiscale</td>
<td>313</td>
</tr>
<tr>
<td>WALES</td>
<td>263</td>
</tr>
<tr>
<td>variational multiscale</td>
<td>313</td>
</tr>
<tr>
<td>zonal LES/RANS</td>
<td>274</td>
</tr>
</tbody>
</table>

Momentum flux 20
Moody diagram 157

n
Navier–Stokes equation 15, 31
Newtonian fluid 110

o
Oldroyd derivative 225
Overlap layer 141, 158, 176

p
Palenstrophy coefficient 74
PANS 276
Pipe flow 156–163
friction factor 157
log law 159
mean velocity 158
normal Reynolds stresses 162
power law 159
Poiseulle flow 135
Pressure
strain 39, 151, 229
work 36, 39, 148, 153, 212, 259
Probability density function 21
joint 21
Projection operator 98

r
Rapid distortion theory 226
Realizability 226
Reynolds
number 16
number scaling of DNS 57
number turbulent 57, 75
stress anisotropy 111, 205, 241
stress budget 153
stress equation 39–40
stress tensor 20, 110, 205
Reynolds averaged Navier–Stokes, see Model

s
SAS 277

Scale

dissipation range 77
integral 24, 55
integral length 77
Lagrangian integral 120
micro 23, 55, 75, 82, 96
momentum thickness 289
ratio largest to smallest 56
small 47
smallest 54

Similarity

canonical flow 141
isotropic decay 77
jet flow 292
mixing layer 300
partial 77, 78
wake flow 286
Skewness 21, 74, 88

Specific heat 33

Spectrum

1D vs. 3D, 58
compensated 64
dissipation 48
dissipation rate 38
energiespectrum 27, 94
energy 94, 96
one-dimensional energy 29
one-dimensional velocity 61–65
spatial 25
time 28

Stagnation point anomaly 128, 211

Strouhal number 285
Strouhal number 285
Structure function 65
Sweep event 118

T
Taylor’s hypothesis 62
Tensor 15
anisotropy 213
deviatoric stress 31
dissipation rate 38
divergence 15
energy spectrum 27, 94
inner product 33
isotropic 47, 51
momentum flux 108
product 20, 32
rate of strain 31
Reynolds stress 110, 205
Reynolds stress definition 20
stress 31, 108
triple velocity correlation 22
two-point velocity correlation 22, 50
 Thermal conductivity 33
 Thin flow approximation 283
Tollmien–Schlichting waves 2, 168
Transition 1
 boundary layer 7, 135, 167
 free shear flow 283
 jet 5
 mixing layer 298
 pipe 4, 156
 vortical structure 177
Transport 20
 acceleration 114
 displacement 114
 gradient 120
 Lagrangian analysis 112–118
 molecular momentum 107
 vorticity 128–132, 206
 Triad wave numbers 97
 Truck flow 7, 324–326
 TS waves, see Tollmien–Schlichting waves
Turbulence
 2D 225
 homogeneous 18, 22, 23, 47
 isotropic 20, 47
 scales 54
 stationary 17
Turbulence modeling, see Model

V
Van Driest damping 209, 261
Velocity
 covariance tensor 20
 defect 283
 fluctuation 19
 Fourier representation 26
 friction 115
 mean 17
 variance 19
 Viscosity 108
 eddy 110
 Viscous sublayer 142
 VLSM 196
Vortex
 filament scheme 188
 rib 299
 roller 286, 298
 street 285
 stretching 41–43, 88, 124
 structure 315
 Vorticity
 equation 40–44
 transport 40, 128–132, 206
W
Wake flow 285–291
 cylinder 285
 mean velocity 290
 self-preserving 286
 velocity defect 283
 von Kármán vortex street 5
 wind turbine 4
Wind turbine 4
Work
 deformation 34, 37
 pressure 148, 153, 212, 259

U
Unidirectional flow 108
Universal equilibrium 55
Utility vehicle 322