Index

Note: Page references in *italics* indicate figures and those in **bold** represent tables.

Abbreviations, 383
Absorption bands, fluoride crystals, 351
Accelerated crucible rotation technique (ACRT), 102–103, 168, 222, 228
axial composition profiles of high-x crystals, 230
bidirectional rotation, 230
cadmium mercury telluride, 225–234
interface depth versus rotation rate plot, 226, 228
LSMS crystal purity survey, 234
meriodonal flow streamlines, 103
radial variations, 228, 229
use at SELEX S&AS, 238
Acceleration, effect on space experiments, 504–505
Acceptors, 45, 46, 66, 142
Acmite, 401
Aggregate diamonds, 419
AlGaAs/Ga, 515
AlGaSb/Ga, 514
Algebraic grid generation, 93
ALICE, 359, 378
Alkali-halide single crystals, nonuniform distribution of activators, 364
Alumina powder, 303
Ammonothermal method, 175
Ampoule rotation, 105, 106, 107
Antiperovskite (BaLiF3), 342
Atmospheric-pressure iodine vapor transport (APIVT) growth, 473
Autoradiographs, InSb[Te] wafers, 159, 160
Axial heat flux (AHP) growth system, 96
Axial segregation, 505, 508
convective, 505, 506
diffusive, 505, 506
Axisymmetric melt growth systems, results of small perturbations, 105, 112
BaBar CsI(Tl) scintillator project, 359
BaCeF crystals
 cellular structure, 348, 349
distribution coefficient, 349
stability function, 349
Backward Euler method, 90
BaF2, 359, 363
BaF2–CeF3, phase equilibria, 349
BaLiF3 (antiperovskite), 342
BaLu2F8, 342
Baroclinic instability flow, 20, 21, 22
Basal plane dislocations, 444
BaYb2F8, 342
BELLE CsI(Tl) scintillator project, 359
Belt-type high-pressure apparatus, 412, 413
 cross-section, 413
 photograph, 413
Berlinite crystals, 396
Berthollides, 345, 346
BGO (bismuth germanium oxide), 359, 363, 509, 512
Bismuth silicate (Bi4Si3O12), growth phases, 377
Blue-violet laser diodes, 203
Boric oxide, 50, 53
Boron, as contaminant of GaAs, 50
Boron-doped diamond crystals, 424
Boundary conditions, 82, 83–84
Boussinesq approximation, 82

Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials Edited by P. Capper
Brain SPECT, curved and cylindrical detectors, 361

Bridgman crystal growth technique, 167, 269
cadmium mercury telluride (CMT), 223–224
closed, 277
free boundary, 84
high-pressure, 236, 237, 277
II–VI compound semiconductors, 276–277
InSb, 164–165
modified, 235
tilted, 106, 107

Bridgman–Stockbarger crystal growth
technique, 276, 364

Bromine-methanol, 263

Bubbles, in corundum crystals, 319–323, 325

Bulk crystal growth processes, 77–78
Bulk solution growth, growth velocity
modelling, 85

Bulk-flow model, 22

Cadmium, purity, 242

Cadmium mercury telluride (CMT), 209–240,
234
ACRT growth, 225–234
ACRT solid/liquid interfaces in quenched high-x, 231, 233
annealing, 215
as-quenched microstructure, 214
axial composition profile, 218, 219
Bridgman growth, 223–224
bulk growth techniques, 209
CdTe seed crystals, 221
compounding, 213–214
conductivity types, 221
crystal diameters, 236
crystal growth, 211–238
device results, 221
diameter limit, 214
dislocation densities, 215
doping, 216, 220
electrical properties, 221, 234
impurities from Bridgman growth, 224
IR images of ACRT slices, 232, 233
LSMS purity survey of Bridgman crystals, 234
mercury and tellurium elemental purification, 222–223
n-type material, 223
p to n type conversion, 224
p–n junction formation, 236
p-type material, 221

phase equilibria, 210–211
pressure–temperature phase diagram, 211, 212, 230
production, 209
quenching, 214
residual impurities, 216
rocking furnace, 213
secondary recrystallization, 214–215
solid state recrystallization, 212–217
structural properties and seeding, 221
tellurium precipitation, 214
THM purification, 219–220
uses in IR devices, 234–235
wavelength variations in ACRT, 231, 232

Cadmium telluride
contamination sources of polycrystals, 245
crystal growth, 243–260
dewetted growth from crucibles, 514, 516
growth by sublimation method, 515
p-type, 246, 248
polycrystal carrier concentrations, 243, 244
polycrystals grown by pBN boats, 243, 246
polycrystals grown by quartz boats, 243, 245
VGF single-crystal growth, 244–260

Cadmium zinc telluride (CZT), 241–267
3D analysis of Bridgman growth, 104–106, 112
5-inch crystal, 244, 247
axisymmetric analysis of Bridgman growth, 102–104
carrier concentration, 248, 249
carrier concentration as a function of Li and Na concentrations, 245, 248
carrier concentration grown by VGF technique, 244, 247
characteristics of wafers, 264–265
correlation between IR transmittance and carrier concentration, 254, 255
correlation between Li and Na concentrations, 249
crystallographic misorientation, 264
dicing, 263
dislocation density (EPD), 256
effect of wafer annealing of precipitates, 254
etching, 262
growth furnace, 260
high-quality substrates, 261
infrared detector arrays, 241
inspection of wafers, 263
IR transmittance, 255, 256
lapping, 263
large diameter crystals, 241
large-sized substrates, 266
p-type carrier concentration, 246, 248
polishing, 263
postgrowth ingot annealing, 251, 252
postgrowth ingot annealing temperature of Cd reservoir and, 251, 252
precipitates, 250–254
process flow, 261–263
quality substrates, 266
slicing process, 262
surface roughness, 265, 266
surface void defects, 250
Te precipitates reduction, 250
thickness variation and warp, 264–265
uses, 241
Zn concentration mapping, 257
Zn concentration maps of 4-inch, 260, 261
CaF₂, 339, 363
Callinan diamond, 428
Calorimeters, scintillation crystal requirements, 359, 360
Capillary effects, 85
Capillary-action shaping technique (CAST), 315
Carbide-forming metals, 410
Carbon, phase diagram, 408
Carl Zeiss Si diode array spectrometer, 257
CaSrNdF, saddle point on melting surfaces, 349, 350
Cast recrystallize anneal (CRA), 212, 222
Cathodoluminescence, 66
Cats2D, 91, 92, 101, 103
CaWO₄ crystals, as scintillators, 357
CdS, In and Te doping, 362
CdTe:Cl/Te, growth on satellites, 514
CdTe:Se:Cl/Te, growth on satellites, 514
CdWO₄, 361, 363
CeF₃, 359
properties, 340
single crystals, 340
Cell-free single crystals, 349, 350
CERN, 378
CF₄, 379–380
Charge-carrier trapping, 379
Chemical polishing, 403
Chemical segregation, 505, 517
Chemical vapor deposition (CVD), 284, 407, 408, 473
Chemical vapor transport (CVT), 270, 272–274, 281, 283, 288, 515
Chips, improvement in performance, 2
Chlorine, as transport agent, 515
Chromium, 45, 46, 49
Cleavage, indium antimonide, 153
CMS project, 359, 378
CMT see Cadmium mercury telluride
Cobalt, impurities in synthetic diamonds, 423
Codes, crystal-growth modelling, 87, 89
Codoping, 348
Cold-crucible technique, corundum crystal growth, 311
Compound melting, types, 347
Computer modelling, 73–119
difficulties, 74
modelling examples, 98–111
present state, 75–77
transport modelling, 75, 79–89
Computer-aided analysis, 89–97
Confined bulk crystal growth methods, 77
Conical etch pits, 161
Convection, effect on growth rate, 477, 505, 507
Convective axial segregation, 505, 506
COP (crystal-originated particles) defect, 36, 37
Copper, 45, 46
Corundum crystals, 300, 309
automatic diameter control, 310
bubble distribution, 321
bubbles, 319–323
crystallization dynamic stability, 305–306
Czochralski growth technique (CzT), 310–312
defects, 319–327
diameters, 306
dislocation density in as-grown, 324
flux growth technique (FT), 318–319
gas-phase growth technique (GPT), 319
growth C-axis direction, 327
growth in stable regimes, 307
Horizontal Bridgman growth technique (HBT), 313
Hydrothermal growth technique (HTT), 319
inclusions, 319–323
Kyropoulos growth technique (KT), 312–313
lattice, 301
plate-shaped, 306
Corundum crystals, (continued)
practical results of theoretic analysis, 306–307
pulling from shaper growth techniques, 314–318
round cylindrical, 306, 307
shaped growth, 314
solid inclusions, 323
theoretical investigation of VT crystal
growth, 304–305
tube-shaped, 307
Verneuil’s sapphire growth technique, 329–330
Cristobalite, 387, 400
α-Cristobalite, 400
Critical Marangoni number, and Prandtl
number, 509, 511
Critical resolved shear stress (CRSS), 152, 162
Critical Reynolds number, and critical rotation
rates, 226, 227
Crystal-growth modelling, 139–141
examples, 98–111
Crystal-pulling control equations, 377
CrysVUn++, 139
CrysVUN, 87, 89, 91, 105
CsI (pure), 363, 379
CSI–CsBr, 379
CsI(Na), 363, 370, 375
CsI(pure), 370
CsI(Tl), 363, 364, 370
replacement by CdWO₄, 379
TI distribution uniformity, 376
Cusp magnetic field, 27–30
CZ-Si growth system, 28
growth conditions, 28
oxygen concentration as function of
solidified fraction, 29
radial distribution of oxygen concentration, 29
CVD see Chemical vapor deposition
CVT see Chemical vapor transport
CZ-Si crystal growth, 11–13
basic process, 11–12
IT as driving force, 39
oxygen concentration in silicon melt, 26
oxygen transportation mechanism, 25, 27
schematic diagrams with cusp magnetic
field, 28
CZ-Si crystal growth apparatus, 6–9
hot-zone, 9, 10
photograph, 7
recharge system, 8–9
reducing Ar pressure, 7–8
schematic diagram, 6
Czochralski, Jan, 452
Czochralski modelling, 99
Czochralski technique, 7, 19, 49, 77, 78, 300, 364
corundum crystal growth, 310–312, 330
dynamic stability analysis, 311
fluoride crystal growth, 347
InSb, 155–164, 169
InSb common defects, 161
photovoltaic silicon crystals, 452–454
photovoltaic silicon growth, 451
schematic diagram of silicon crystal growth
method, 453
silicon, 89
CZT see Cadmium zinc telluride
Damköhler number, 110
Decanted sapphire ribbon, interface, 322, 323
Deep level transient spectroscopy (DLTS), 64–65
Defect-cluster formation and transformation, 345
Defect-selective etching, 175
Defects
indefinite antimonide, 153, 161
microscopic, 113
Definitions, 383
Deforming grids, and ALE methods, 92–94
Deforming-grid methods, 90, 91, 95, 112
failure situations, 91, 92
in time-dependent problems, 94
Dendrites, 214
Detached growth, in space, 510–511
Dewetting, 480, 481, 482, 483, 484, 511–512, 513, 516, 517
Dewetting configurations, 511, 513
Diamond, phase transition between graphite
and, 408
Diamond anvil cell (DAC), 408
Diamond crystals, 407–432
agents for formation, 409–411
agents for synthesis, 411
annealing, 428
as-grown surfaces, 420
blue, 424–425
boron-doped synthetic, 426
brown, 424, 425
carbon source, 411–412
chemical-potential-difference growth method, 414–415
classification, 422
color change with heat treatment, 427–428
color control, 423–428
colorless, 417
covered in metal film, 414, 415
dendritic patterns, 419, 420
doping with impurities, 424–426
effect of growth temperature on color of, 426–427
green, 424, 425
growing regular-shaped crystals, 414
grown on a seed crystal, 416, 417
growth, 407–432
growth methods, 412–417
growth patterns from sodium carbonate, 420, 421
high-pressure synthesis apparatus, 412
high-pressure synthetic, 417, 418
hydrogen impurities, 422–423
impurities, 422–423
inclusions, 421–422
largest synthetic, 417, 418
morphology of single crystals from solvent/catalysts, 417–419
nonmetallic compounds as synthesis aids, 410
properties of single crystals from high-pressure method, 417–428
spiral patterns dendrite, 419
surface morphology of single crystals from synthesis, 407, 408–417
temperature-gradient growth method, 416–417
tetrahedrally arranged facets, 157
transparent polycrystalline, 409
twinned crystals, 419
types, 422
yellow, 417, 425
Diamond grit, 414, 415
Differential-algebraic equations (DAEs), 89–90
Diffuse-interface models, 84, 86, 112
Diffusion, indium antimonide, 153
Diffusive axial segregation, 505, 506
Direct melt crystallization, 341, 342
Discretization, 89–90
interface, 112
Discretized transport models, phase interfaces representation, 90
Dislocation reduction, 135–136
Dislocation-free Czochralski silicon crystals, 33
Dislocation-reduction anneal (DRA) process, 215
Dislocations
 corundum crystals, 323–326
density, 134
GaAs, 55
InP, 133–134
DLTS see Deep level transient spectroscopy
DNS (direct numerical simulation), 22
Donors, 45, 46, 46, 143
 segregation coefficients, 46, 47
Dopants, 43, 141–145
 choice of, 45
dislocation density reduction, 135
 in FZ Si crystal growth, 15
 influence on distribution coefficient, 348
 n-type InP, 141–142
 p-type InP, 142
 segregation coefficients, 348
Doping, 423–424
 of nitrogen in diamond synthesis, 426
Double crystal X-ray diffraction (DXD), 67
Drop towers, 502
DZIG (denuded-zone intrinsic gettering), 32
Edge-defined film-fed growth (EFG), 315, 463, 465, 466
Edge-supported pulling (ESP) technique, 466, 468
Effective evaporation coefficients, 458
Effective segregation coefficients, 458
Ekman flow, 226, 227
Ekman layer thickness, 226
Ekman pumping, 104
EL2, 52–53, 58–59, 65
 luminescence, 66
Electrocontacting probe, 369, 370, 373
Electrodiffusion, 403
Electromagnetic calorimeters, 359
Electromagnetic casting, 461
Element-edge-interface method (EEIM), 95, 96
 comparison to deforming-grid method, 95
Elliptic grid generation, 93
ELOG (epitaxial lateral overgrowth), 174
Elpasolite (A_2BIF_6), 342
EMCZ (electromagnetic Czochralski), 38, 39
Energy, in space, 503
Enthalpy method, 90, 112
Equations, macroscopic transport phenomena, 112
ErF₃, 342
Etch pits
densities, 161
star arrays, 161
EURECA, 514
European Space Agency, 478
European Spacelab, 478
Experimental cartridge, 502, 503
Extrinsic doping, 436
Faceting, 85, 113, 157–158
Facets, segregation to, 159–161
Fast scintillators, 340
Feed materials, processing, 351
Feed-rod preparation, FZT, 310
FEMAG, 87, 89
Fiber-optic telecommunication detectors, 221
Finite-difference discretization method, 90
Finite-element discretization method, 90
Finite-volume discretization method, 90
Fixed-domain methods, 112
Fixed-grid methods, 90, 91, 112
simple, 94–96
Float-zone technique (FZT), 77, 451
feed-rod preparation, 310
preliminary heating, 308
refinement of silicon sheets, 98–102
sapphire crystal growth, 308–310, 330
silicon growth, 455–456
Floating crucible, 167
Fluoride crystals, 339–355, 379–380
cellular structure, 348, 349
hydrolysis and melt fluoride growth,
350–352
morphological stability, 348–350
oxygen impurities of single, 351
purification, 352
uses, 339
Fluoride-type solid solution, melt
crystallization, 348
Fluorinating agents, efficiency, 351
Fluorination atmospheres, schemes, 351
Fluoroperovskites (AMF₃), 342
Flux technique (FT), 300
corundum crystal growth, 318–319
sapphire crystal growth, 331
Fourier transform infrared (FTIR) map, 230,
231
FPD (flow-pattern defects), 36, 37
Free-boundary problems, solving, 84
Free-fall tubes, 502
Front-track methods, 91, 112
Full-wafer mapping, 141
FZT see Float-zone technique
g-jitter effects, modelling, 88
Ga-N₂ isobars, 192, 193
GaAs/Ga, 515
(Ga,In)Sb, 166–167
GaInSb crystals
axial chemical segregation of In, 505, 506
segregation of In during Bridgman growth
of, 505, 506
Galerkin finite-element method, 90
Galerkin-least Squares method, 90, 105
Gallium antisite defect, 44
Gallium arsenide (GaAs), 43–71, 509, 510
comparison of growth by fixed-grid and
deforming-grid methods, 92
conducting, 64–65
contamination of HB and horizontal GF, 49
crystalline defects, 54–59
deep level defects, 63–65
dopants, 45–48
electrical analysis of defects, 61–65
growth in quartz crucible with/without boric
oxide, 55
growth rate control, 51
growth of SI LEC, 52–53
growth techniques, 48–54
identification of shallow impurities in n-type,
63
identification of shallow impurities in p-type,
62
impurity and defect analysis, 59–61
introduction of boron, 56
mapping of surface properties, 67
melt formation, 48
n-type crystals, 50
optical analysis of defects, 65–67
oxygen in, 61
p-type, 52, 62
p-type doping in melt-grown, 47
phase diagram, 44
photoluminescence spectra, 66
rocking curves, 67, 68
segregation coefficients for impurities, 45
shallow donors and acceptors, 45, 46
shape control, 51
Si doping, 55
solidus, 44, 45
Te doping, 56
Gallium nitride (GaN), 173–207
2D-nuclei, 190
100-µm thick, 201
150-µm thick, 199, 201
applications of pressure-grown bulk substrates, 201–203
asymmetry of plate-like crystals, 185, 186
beryllium doping, 185
blue LEDs, 437
bonding, 176
crystallization, 176
crystallization experiments, 182
crystallization on the free gallium surface, 192–193
crystallization from atomic nitrogen solutions, 175
crystallization from solution, 179–182
crystallization in a temperature gradient, 188–192
decomposition in supersat. Ga:N soln, 179, 180
defect-selective etching, 187–188, 189
dependence of growth rate on GaN/Al2O3 substrates, 198, 199, 200
deposited on GaN/Al2O3 and single-crystalline GaN, 198, 199
deposited on GaN/Al2O3 substrates, 199, 201
development of optoelectronic devices, 174
directional crystallization and foreign substrates, 194–201
directional growth, 205
epitaxial layers growth rates, 174
free-electron concentration distribution, 186, 187
grown at different supercoolings, 192, 193
growth on Ga-polar surface, 196, 197
growth instabilities, 184
growth on N-polar surface, 196
growth of quality crystals, 175
high-pressure crystallization results, 193, 194
increasing lateral size of crystals, 191
laser diode characteristics, 203, 204
melting temperature, 175
Mg doping, 184, 187
morphology, 183–185
morphology of as-grown surfaces of 40-µm GaN, 199, 200
n-type, 184, 185, 196
native point defects, 185
near-dislocation-free crystals, 194
nucleation dependence on supersaturation, 189
nucleation rate, 190, 191
nucleation theory, 181
optical properties, 201, 202
oxygen doping, 185
phase diagrams and growth methods, 175–182
physical properties of pressure-grown, 185–188
polarity, 184
problems growing crystals, 194
role of high pressure in synthesis, 178–179
seeded growth from solutions in gallium on GaN substrates, 195–197
seeded growth from solutions in gallium on GaN/sapphire substrates, 197–201
semi-insulating, 184
solution growth, 175
study of structure of pressure-grown, 186
substrates grown under pressure, 173–207
surface crystals grown at different supercoolings, 192
synthesis from liquid Ga and N2 plasma, 178, 179
TEM scans, 187, 188
uses, 173
Gallium—gallium nitride system, liquidus line, 178, 182
Gamma camera detectors, 361, 364
GaN-Ga-N2 system, thermodynamic properties, 175–182
GaP/Ga, 515
Gas-phase technique (GPT), corundum crystal growth, 319
Gas-pressure differences, 516
GaSb, 478, 509
GaSb:Te/Ga, 514
GdF3, 342
α-GdF3, temperature stability, 345, 346
Ge:Ga crystals, 478
Geostrophic turbulence flow, 22
Germanium, Marangoni convection, 509
GeSe, 478, 515
GeSeTe, 515
GeSSe, 515
GeTe, 478, 515
 Gettering effect, 32
Gibbs free energy
gallium nitride (GaN), 176, 177
INDEX

Gibbs free energy (continued)
 temperature dependence, 341
Global heat analysis, 22
Global model, 23
Global two-dimensional solution, 87
Glow-discharge mass spectrometry (GDMS), 59, 60, 125
GOI (gate-oxide integrity) defects, 36
Gradient freeze method, 277, 292
Gradient solidification method (GSM), 314
Grain boundaries, 325
Graphite, 411
 direct transformation to diamond, 408–409
 isotopically modified, 412
 phase transition between diamond and, 408
Grashof number, 22
Grid-generation methods, 93
Growth morphology, predicting, 113
Growth rate, quartz crystals, 399–400

H₂O, diamonds formed from, 411
Halide scintillators, 359, 362, 374
 crystal-diameter, 373
 crystal-diameter control, 369
 crystal-growth stages, 371, 372
 crystal-length control, 369
 crystal-weight control, 369
 growth, 364–374
 growth of large-size single crystals, 365
 low radiation hardness, 379
 plastic deformation, 379
 required doping, 364
Hall-effect analysis, 61–62
Hall-effect measurements, 215
Hazards, in InP synthesis, 123–124, 128
Heat- and mass-transfer processes, analysis, 18–24
Heat-exchange method (HEM), 300
 sapphire crystal growth, 313–314, 330
Hemispheric pits, CZ InSb, 161
Heterojunction bipolar transistor (HBT), 122
HF, 351
HgTe–CdTe system
 liquidus and solidus lines in pseudobinary, 211
 pseudobinary phase diagram, 229
High electron mobility transistors (HEMTs), 436
High-energy physics, 381, 382
 use of scintillators, 359
High-pressure growth, 216
High-pressure method, diamond synthesis, 407, 408
High-temperature chemical vapor deposition (HTCVD), 437
Horizontal Bridgman technique (HBT), 48, 77, 277, 300
 corundum crystals, 313, 330
 InSb small crystals, 165
Horizontal casting, 216
Horizontal continuous crystal growth, 365, 367
Horizontal gradient freeze (GF) method, 49
Horizontal ribbon growth (HRG), 469, 470
Hot-zone, CZ-Si apparatus, 9, 10
HPSI, 437
Hydride vapor phase deposition (HVPE), 174
Hydrogen
 as aid for graphite to diamond conversion, 411
 in heat treatment of semi-insulating InP, 144
 in InSb crystal growth, 154
Hydrolysis, and melt fluoride growth, 350–352
Hydrothermal autoclaves, characteristics for ideal, 396
Hydrothermal technique (HTT), 269, 270
 corundum crystal growth, 319, 331
 K₂RF₅, 347
 quartz growth, 388
 wide-bandgap II-VI semiconductors, 277–279
 ZnO growth, 282
Hydrothermal technique (HTT) internal stresses of sapphire crystals, 325
ICP (inductively coupled plasma) method, 257
II-VI compound semiconductors
 applications, 269
 Bridgman method, 276–277
 controlling growth, 277
 crystal-growth methods, 270–280
 CVT growth parameters, 274
 growth from liquid phase, 276–280
 growth from vapor phase, 272–276
 growth of single crystals, 277
 physical and chemical properties, 270, 271–272
 wide-bandgap, 269–297
see also Wide-bandgap II-VI compounds
Imperfections, 105
Impurities, concentration profiles in PV Si crystals, 457, 458, 459, 460
Impurity-bound exciton emission, 362
INDEX

533

(In, Tl)Sb, 168

In(As, Sb), 168

In(Bi, Sb), 168–169

Inclusions

α-quartz crystals, 401
diamond crystal metallic, 417
diamonds, 421–422
fine, 421, 422
irregular shaped, 421
solid, 323

Incongruent melting, 347

Incremental quenching, 216

Indium, raw material for InP, 125

Indium antimonide (InSb), 509

{111} planes, 151, 152
anomalous segregation of impurities, 159
applications, 150
bandgap, 149, 150
Bridgman growth, 164–165
characteristics, 150
cleavage on {110} planes, 153
conical etch pit patterns, 153–154
crystallography, 151–154
Czochralski growth, 155–164
defects, 153, 161–162
diffusion, 153
dopants, 154–155
evolution, 169
growth axis choice and implications, 162–163
growth conditions, 154
history, 149–150
impurities, 154–155
infrared detectors, 150
lattice, 151, 152
melting point, 154
polarity, 151–152
production challenges, 156–162
properties, 151–155
related pseudobinary (ternary) alloys, 165–169
significant growth parameters, 154, 155
size evolution and drivers, 163–164
slip, 152, 161–162, 164
Tl-substituted, 168
twinning, 152, 156–157
VGF growth, 164–165
X-radiation interaction, 151

Indium phosphide (InP), 121–147, 515
chemical bonding, 124
control of crystal shape, 130
crystal seed cone cross-section, 133
crystal structure, 124–125
defects, 132–135
diameter control, 131–132
hazards in synthesis, 123–124, 128
material properties, 122–123
polycrystalline synthesis system, 126, 127
seed-end carrier concentration, 128
single-crystal growth, 129–132
single-crystal yield, 137
synthesis, 125–129
synthesis hazards, 128
temperature dependence of saturated vapor pressure, 123
uses, 122

Industrial chemical etching process, 404
Infrared detector arrays, 241
Infrared devices, uses of CMT

Bridgman/ACRT material, 234–235
Infrared transmittance, 254–256
Inorganic fluoride single crystals, 339
Inorganic scintillators, 362
InP:S/In, 514
InSb:Te crystals, 477–478
InSb see Indium antimonide

Interface motion, bulk-crystal-growth systems, 96

Interface-controlled crystallization (ICC), 472
Interfacial boundary conditions, 95
International Technology Roadmap for Semiconductors (ITRS), 2

Inverted Stepanov technique, 466
Iodine, as transport agent, 515
Iodine transport method, 281, 288
Ion beam etching (IBE), 403

Iron

acceptor in InP, 142
in diamond formation, 410
doping, 142, 143

Iterative solvers, 76

K₂RF₅, 347
KF-RF₃ systems, stability, 346
KMgF₃ (perovskite), 342

KTP see Potassium titanyl phosphate

KY₃F₁₀, 346

Kyropoulos technique (KT), 293, 300, 364, 365
corundum crystals, 312–313, 330
furnace types, 312
LaBr₃:Ce, 381
LaCl₃:Ce, 381
LaF₃, temperature dependencies of solubility in MF₂, 344, 345
Laminar flow, 89
Laplace-transform DLTS, 65
Large-area solid/liquid interface growth methods, 468–472
Large-eddy simulation (LES), 22, 23, 89
Laser diodes
II–VI compound semiconductors, 269
low-power blue, 174
structure of GaN, 203, 204
Laser-scattering tomography (LST), 253, 254
Lely process of SiC single-crystal production, 434
Level-set method, 90, 91
LiCAF, 347
LiF-MF₂ systems, decomposition, 342, 343
LiF-YF₃ system, 347
Light-emitting diodes (LEDs)
high-brightness blue and green, 174
II–VI compound semiconductors, 269
Liner assembly, quartz crystal growth, 396, 397
Liquid boric-oxide glass, 128
Liquid encapsulated Czochralski (LEC) growth GaAs, 49–52
InP, 129
pullers, 50, 129, 130
wide-bandgap II–VI materials, 279–280
Liquid inclusions, 106
Liquid phase epitaxy (LPE), 209, 473
LiSAF, 347
Local shaping technique (LST), 317, 318, 347
Localized vibrational modes (LVM), 59–61, 65
Low-angle silicon sheets (LASS), 469
Low-carbon steel autoclaves, 396
Low-dislocation crystals, 400
Low-temperature luminescence, from point defects, 66
LSI (large-scale integration) chips, 1–2
fabrication, 24
void defects, 37
LST (laser-scattering tomography) defects, 36
LuAP:Ce (lutetium aluminate), 363, 382
Luminescence, 362
room-temperature measurements, 67
in semiconductors, 66
Lutetium orthosilicates (LSO), 363, 382
cerium-doped (LSO–Lu₂SiO₅(Ce)), 378
Lutetium yttrium orthosilicate, 382
Lyapunov approach of stability analysis, 305
Macroscopic modelling, microscopic phenomena integration, 75
Macroscopic transport phenomena, 74
Magnesium, in conversion of graphite to diamond, 410
Magnesium carbide, 410
Magnetic fields, 516
application to a conducting liquid, 82
manipulating convection, 88
Mapping, 62
Marangoni effect, 84
CZ-Si effect, 39
Marangoni flow, 23
Marangoni numbers (Ma), 508–509
Mass balance, 109, 110
Mass transport, 109
Medical imaging, 361, 382
Melt feeding, 372
Melt growth, species mass conservation, 97
Melt volume, 100
Melt-grown GaAs, donors, 46
Melt-grown semi-insulating GaAs defects in, 54–59
native defects, 57–58
point defects, 57–59
structural defects, 54–56
Melt-growth methods, 77
Melt-growth models, 112
sharp-interface, 84
Melt-growth systems, growth kinetics, 85
Melt-level elevation, 369, 370
Melt-weight control, 369
Meniscus, static stability, 318
Meniscus-defined growth, 77, 98
Mercury cadmium telluride, Zn concentration and uniformity, 256–260
Mercury purification, 222–223
Metal organic chemical vapor deposition (MOCVD), 174
Metal solvent/catalysts, effect on diamond color, 423–424
Metal–carbon system, schematic diagram, 412, 414
Metal-insulator-semiconductor (MIS) detectors, 213
Metal-organic vapor phase epitaxy (MOVPE), 209
Metallurgical-grade silicon (MG-Si), 4
Method of spines, 93
MF_2 fluorite-type fluorides, 344
$MF_2 - RF_3$, phase diagrams, 344
MgF$_2$ doping, 342
Microgravity, 504
Microgravity conditions, bulk crystal growth under, 477–524
Microgravity crystal-growth experiments by Bridgman method, 479–487, 502
classification, 502
crystal quality, 516
float zone or molten drop, 488–496, 502, 508–510
from solution, 479–499, 502, 514–515
from vapor, 500–501, 502, 515, 516, 517
timetable, 503–504
Micropipes, 445, 446, 447
Microsegregation, 505, 508
Mineral silica, 4
Minority traps, 64
MIR orbiting station, 478
Misfit dislocations, 214
Modelling see Computer modelling
Modelling examples, crystal-growth, 98–111
Modelling techniques, 39
Modified Bridgman autoclaves, 396, 397
Modified techniques of pulling from the shaper (TPS), 316–317
Modified Verneuil’s sapphire growth technique, 304
Modified-Lely method, 276
Molecular beam epitaxy (MBE), 209
Monoclinic Ba$_2$F$_8$ compounds, 342
Multicrystalline silicon
directional solidification, 460–461
impurities, 461
Nickel
effect on color of diamond crystals, 428
impurities in synthetic diamonds, 423
NIR mapping system, 257, 258
NIR measurement, temperature dependence, 259
NIR transmission spectra, 257, 258
Nitrides, structural defects, 174
Nitrogen
in diamond synthesis, 424
impurities in diamonds, 427
solubility in liquid gallium, 192, 193
Nitrogen getters, 424
No-penetration conditions, 82, 83
No-slip conditions, 82, 83
Noninertial reference frames, 82, 88
Normal freeze segregation, 158
Nucleation
InSb (111) growth plane, 162
InSb[Te], 160
rate of, 181
Nucleation theory, 181
Numerical interface representation, 90–92
Numerical modelling, 39
Optical low-pass filters (OLPF), 388
Optical transparency, single crystals of solid solutions, 344
Optoelectronics, short-wavelength, 173
Order–disorder phase transitions, 342
Oxidation-induced stacking faults (OSF), 33–35
Oxide scintillators, 362, 363
crystal growth, 376–378
crystal-diameter constancy, 376
crystal-growth control, 377
doping, 364
high melting point crystal growth, 383
gle single crystals, 364
uses, 376
Oxygen
precipitation and gettering, 30–33
in Si crystals, 27–30, 35, 36
Parallel-computing development, 76
Partial-differential-equation-based grid generation, 93
pBN-polycrystal boats, 243, 246
PbWO$_4$, 359
Peclet number, 507
Pellet source seed model, 439
Nacken, Richard, 389
NaF–RF_3, 346
NaFe$^{3+}$Si$_2$O$_6$, 401
NaI(Tl), 359, 361, 363, 364, 370, 375
Nakagawa etchant, 256
‘Nanotopography’, 16
NaRF$_4$, gagarinite crystals, 346
NASA, 477
Natural convection, effect on axial chemical segregation, 516
Navier–Stokes equations, 100
‘Needle-eye technique’, 15
Newton’s method, 90
Ni–C system, phase diagram, 409, 410
Penetration conditions, 83
Perovskite (KMgF₃), 342
PET (positron emission tomography), 361
Phase diagrams, 348, 350
 pressure–temperature phase diagram, 230
 wide-bandgap II–VI compounds, 270, 273
Phase transitions, 342
Phase-field method, 90, 112
Phosphorus, raw material for InP, 125
Phosphorus impurities, in CVD diamond, 423
Photo-induced current transient spectroscopy (PICTS), 63
Photo-thermal ionization spectroscopy (PTIS), 63
Photoluminescence, 66
Photovoltaic silicon crystals, 451–476
 casting and directional solidification, 459–461
 comparison of growth methods, 473–475
 comparisons between CZ and FZ growth, 456–459
 concentration profiles for selected impurities, 458, 459
 Czochralski growth, 452–454
 dendritic web growth, 463, 464
 feedstock, 454
 FZ growth in a vacuum, 458
 growth rate as function of crystal diameter, 453, 454
 large-area solid/liquid interface growth methods, 468–472
 mulicrystalline ingot growth methods, 459–462
 ribbon or sheet growth methods, 463–472
 small-area solid/liquid interface growth methods, 463–468
 Stepanov growth, 463, 464
 thin-layer growth on substrates, 472–473
 see also Silicon
Physical vapor transport (PVT), 272, 274–276, 281, 434, 435, 517
SiC growth system schematic diagram, 435
ZnSe single crystal growth, 288
Pill-doping method, 459
Piper–Polich method, 274
Point defects, SI GaAs low-temperature luminescence, 66
Polycrystalline GaAs, 53
Polycrystalline InP, GDMS impurity analysis, 129
Polycrystalline silicon, manufacture, 3–6
Polymorphism, 340, 342
Position-sensitive photomultiplier tube (PMT), 361
Post-growth annealing method, 251
Potassium titanyl phosphate (KTP)
 particle pathlines around rotating crystals, 108
 solution growth morphological stability, 106–111
Powder-feeding method, 372
Preconditioned generalized minimal residual (GMRES) method, 90
Preconditioners, 77
Pressure autoclaves, 396
Pressure-controlled-LEC (PC-LEC), 136
Pseudosolid-domain mapping, 93
Pulling from the shaper techniques see
 Techniques of pulling from shaper (TPS)
Pulling parameters, 368
PWO, 377–378
Pyrohydrolysis, 350
Pyrolytic boron nitride (pBN), 126, 243, 246
Quality factor, quartz crystals, 399
Quantitative furnace modelling, 112
Quantum wells, 122
β-Quartz, 387
Quartz, fabrication from a single crystal, 398, 399
Quartz boats, 243
Quartz crucibles, 53
Quartz crystals, 387–406
 aluminum concentration check, 401
 apparatus for hydrothermal growth, 396
 applications, 388
 characteristics of low-defect, high-purity, 402, 403
 chemical impurities, 403
 commercial production at AT & T Bell Labs, 390, 391
 conditions for selecting most suitable mineralizer, 392
 crystal defects, 403
 crystalline forms, 387
 dependence of effective partition coefficient OH⁻ impurity on growth rate, 401, 402
 distribution of impurities in synthetic, 402
 effect of nutrient materials on quality, 400
 effect of seed on quality, 400
 grown by Nacken, 389
 growth rate, 399–400
 growth of a single crystal into the seed, 392
history of growth, 388–391
Hydrothermal growth, 388, 390, 396
inclusions, 403
log solubility in NaOH and Na₂CO₃, 393, 395
obtained by Walker, 390, 391
optimum growth conditions for synthesis, 398
physical chemistry of growth, 391–392
principal source, 388
production costs, 388
quality factor Q, 399
quality of grown crystals, 398
quality parameters, 402–403
solubility, 392–395
solubility in mixed solvents, 400–401
structure, 387
type of crystals to be grown, 398
α-Quartz crystals, 387
applications, 388
defects in synthetic crystals, 401–402
growth, 396–398
obtained using α-cristobalite, 400, 401
physicochemical defects, 401
processing for high-frequency devices, 402–404
Quartz resonators, 403
Quasi-steady-state models, 96–97
Quench anneal, 212
Quenching studies, CMT, 228–229
Radial segregation, 505, 508
Radial x variations, 223, 228, 229
Radiation heat-transfer modelling, 86–87
Radiation-detection devices, 357
Radiation-hard scintillation single-crystal production, 381
Radiochemical transformations, 379
Ramp-assisted foil-casting technique (RAFT), 472
RANS (Reynolds-averaged Navier–Stokes), 22
Rare-earth trifluorides (RF₃), 339, 344
high-temperature polymorphs, 341
pattern of polymorphism and morphotropy, 340, 341
phase transitions, 340, 341
Raw-material feeding method, halide scintillators, 373
Raw-material feeding system, 365, 366
Raw-material purification, 372
Reactive ion etching, 236
Red phosphorus, 126
Reference frames, 82, 88, 99
Residual gravity level, 507
Resistivity maps
Fe doped wafers, 143, 144
SI GaAs wafer, 62
Resonators
fabrication from single quartz crystal, 398, 399
produced by chemical etching processing, 404
Reverse contrast (RC) defect, 59
Reynolds-averaged Navier–Stokes (RANS), 89
RFe, transformation to berthollides, 345
Ribbon growth on substrate (RGS) technique, 472
Ribbon or sheet growth methods, photovoltaic silicon crystals, 463–472
Ribbon-against-drop (RAD) method, 466, 467
Ribbon-to-ribbon float zoning (RTR), 465, 467
Ribbon-to-ribbon (RTR) process, 98
reference frame, 99
results, 101
Rocket nose cones, requirements, 328
Rocking curves, GaAs wafer, 67, 68
Roller quenching (RQ) method, 471
Rotary Bridgman technique, 168
Rotating magnetic fields, 39
Rubies, 300
impurity inhomogeneities, 327
Ruby-sapphire crystals, 304
S doping, InP, 141
S-web method, 470
Saddle points, 349, 350
Salyut, 478
Sapphire crystals, 194, 302–319
applications, 327–329
crystallographic structure, 301–302
data, 335–338
dome production, 328
electrical data, 337–338
facetted growth, 326
growth by floating-zone technique (FZT), 308–310
growth by horizontal Bridgman technique, 313
melt data, 334–335
optical data, 337
physical properties, 334–338
physical/mechanical data, 335–336
Sapphire crystals, (continued)
principal growth scheme, 302–303
pulling from shaper growth techniques,
 315–316
raw material, 303
resistance properties, 338
shaped growth, 314
single crystal production, 313
as substrates in electronics, 329
thermal data, 335
TPS-grown defect structure, 325
twinning process, 326
Verneuil’s growth technique, 302–308
windows requirements, 327–328
Sapphire substrates, 197–201
 as seed material for ZnTe, 292
Satellites, automatic, 502
Scavenger principle, 352
Scavengers, 364
Schottky-barrier method, 64
SCIM (silicon coating from an inverted
 meniscus) technique, 471
Scintillation pulse decay time, 358
Scintillation-material efficiency estimation,
 361–364
stages, 361–362
Scintillator crystals, 357–385
 activator distribution of single, 374–376
 activator evaporation, 375
applications, 357, 358–361
conditions for manufacture of crystals with
 good characteristics, 377
Czochralski system for fluoride growth,
 380
development history, 357–358, 359, 360
extrinsic luminescence, 362
future of, 383
groups, 362
growth in a RAP atmosphere, 380
growth techniques and materials, 375
impurity distribution, 374
influence of single-crystal perfection on
 characteristics, 378–381
initial luminescence mechanisms, 362
low luminescence efficiency, 362
lutetium compound, 382
material types, 362, 363
medical imaging, 361
melt-level elevation, 369, 370
new, 381–382
radiation hardness, 358
requirements, 358
sources of efficiency loss, 378
use in experimental high-energy physics,
 359–361, 364
Screw dislocations
 CZ InSb, 161
 SiC, 445
Second-order trapezoid rule, 90
Secondary ion mass spectrometry (SIMS), 59
Seebeck coefficient, 236
Seed-end wafers, dislocation patterns, 135
Seeded chemical vapor transport (SCVT), 276,
 281, 283
Seeded growth
 GaN from solutions in Ga on GaN
 substrates, 195–197
 GaN from solutions in Ga on GaN/sapphire
 substrates, 197–201
Seeded physical vapor transport (SPVT), 269,
 270, 276
Segregation coefficients, of dopants in
 melt-grown GaAs, 46, 47
Selenium, purification, 289
Semi-infinite melt scheme, 167
Semi-insulating GaAs, deep level defects,
 63–64
Semi-insulating InP, 142–145
Semi-insulating LEC GaAs, 52–53
Semi-insulating SiC (SI-SiC) substrates, bulk
 growth, 436–437
Semiconductor-grade silicon (SG-Si), 5
Semiconductors
 melting conditions, 175, 176
 roadmap, 2–3
Semicontinuous edge-supported pulling (ESP)
 ribbon growth, 468
Semicontinuous electromagnetic casting,
 461–462
Semicontinuous silicon ingot growth, 461
Shallow acceptors, low-temperature
 luminescence, 66
Shallow donors, 143
Sharp-interface methods, 84, 86, 91, 112
Siemens method, 5
Silica, 4, 400
Silica crucible, 9–11
Silicon, 1–42
 behavior of oxygen and vacancies in
 crystals, 35, 36
 crystal-growth method and technology, 3–18
defect and wafer quality, 30–39
diameter growth control of crystals, 8
dislocation-free crystal growth, 12–13, 14
float-zone (FZ) crystal growth, 13–16
grown-in defects of crystals, 33–39
high-purity polycrystalline silicon, 3–6
improvement in chip performance, 2
impurities in CVD diamond, 423
intrinsic point defects, 35
melt process, 18–30
in SI GaAs, 57
slicing crystals, 17
vacancies in crystals, 35
void defects of wafers, 39
wafer processing, 16–18
wafer size, 3
wafers polishing process, 18
see also CZ-Si; Photovoltaic silicon crystals

Silicon carbide (SiC)
advantages, 433
boule growth process, 434
bulk growth process, 437–442
commercialization challenge, 447
crystal growth rate, 444
crystallization, 441–442
defect types, 443
doping of boules, 437
factors affecting crystal growth, 441
growth, 433–449
growth in argon gas mixture, 440
growth by sublimation, 434
growth crucible, 437, 438
growth direction, 435–436
growth-related defects, 444–446
historical development, 434–435
industrial production, 435–437
LPE growth from Si/Sc solution, 515
mass transfer region, 440–441
n-type doping, 437
nucleation centers, 441–442
p-type doping, 437
planar or hexagonal defects, 446
properties, 433
screw dislocations, 442
seeded sublimation, 435
source region, 438–440
sublimation temperature, 438
substrates and homoepitaxial growth, 433
temperature dependence of vapor
stoichiometry coefficient, 439

Silicon melt
measuring silica (or oxygen) dissolution rate, 25
visualization of flow field, 19

Silicon sheet from powder (SSP), 468, 469

Silicon-on-ceramic (SOC) growth technique, 465
Silicon-oxygen binary system, phase diagram, 30, 31
Simple fixed-grid method, 94–96
SiO2 see Quartz
Skylab missions, 477
’Slush’ growth, 216
Small-area solid/liquid interface growth
methods, photovoltaic silicon, 463–468
Sn doping, 141
Solar-cell silicon see Photovoltaic silicon
crystal growth
Solid inclusions, corundum crystals, 323
Solid phase recrystallization (SPR), 280, 281
Solid solutions, decomposition and ordering, 342–346
Solid state electrolysis, 403
Solid state laser media, 339
Solid state recrystallization (SSR), 209,
212–217, 222, 280, 281
Solid state transformations, radiation-induced, 379
Solute-feeding, 167
Solution crystal growth, coupled surface and
bulk transport model, 108
Solution growth with agitation, 77, 78
Solution-growth bulk crystal growth methods, 77
Solution-growth model, 113
Solution-growth system, behavior of steps,
110, 111
Solvent/catalysts, for diamond formation, 409
Space crystal-growth experiments, 478
Space shuttle, 502
Space stations, 502
SPECT (single-photon emission tomography), 361
Spectral discretization method, 90
Spiral shearing flow, 225
SSP (Silicon sheet from powder), 468, 469
SSR see solid state recrystallization
Stability functions, 348
Step bunches, 106, 110
Step motion, 108
Step spacing, 110
Stephanov technique, 315
Stockbarger method, 364
modified, 365, 366
Streamline-upwind Petrov–Galerkin method, 105
INDEX

Striations
 segregation in InSb, 158–159
 type II, 514
Structural defects, heteroepitaxial nitrides, 174
Sublimation method, 434, 515
Sublimation THM, ZnTe single crystal growth, 293
Sulfur, in SI GaAs, 57
Supercooling, 195
Supersaturation, 86
Surface light scattering observation (S-LS), 253
Surface quality, GaAs substrates, 67
Sweeping, enhancing quartz resonators performance, 403
Taylor–Görtler-type flow instability, 103, 104
Teardrop-shaped pits, 161
Techniques of pulling from shaper (TPS), 315–316, 318, 330–331
Teflon decomposition process, 351
Tellurium
 inclusions in CZT, 102
 purification, 223
 purity, 242, 243
Temperature gradient reduction, 135
Temperature gradient technique, 314
 diamond growth, 416–417
Ternary antimonides, 165
Ternary phase diagram, In(As, Sb), 168
Thallium iodide feeding concentration, 376
Thermal-stress-generation mechanisms, 443–444
Thermally stimulated currents (TSC)
 spectroscopy, 63, 64
Thermocapillary convection, role on striations, 516
Thermophysical property data, 23
Thin-layer silicon, 472
Threading edge dislocations, 445
Three-dimensional phenomena, modelling difficulties, 76
Three-dimensional transport phenomena, 76
Tiller’s approximation, 348
Time scales, bulk crystal growth, 74
Time-dependent transport models, 76
Time-domain charge measurement (TDCM), 62
Top-seeded solution growth (TSSG) technique, 347
Toroidal apparatus, 412
TPS see Techniques of pulling from shaper
Tracer particles, 19–20
Tracking, interface, 112
Transient Couette flow, 225
Transition metals and alloys, diamond
 formation agents, 409
Transport equations, 97
Transport modelling, 75, 76, 79–89, 112
 governing equations, 79–83
 nomenclature, 80–81
Traps, 63, 64
Traveling heater method (THM), 77, 167, 209, 217–222, 514
ACRT and, 220
CdTe and HgTe feed materials, 218, 219
CMT growth, 217–222
 experimental arrangement, 218
 furnace arrangement, 218
 mass and heat transport, 220–221
 principle, 217
 segregation of impurities, 218–219
 temperature profile, 218
 wide-bandgap II-VI materials, 279
Tridymite, 387, 400
Tube crystals, float-zone growth modelling, 99
Turbulence flow models, 22, 89
Twinning, 342
 at ‘edge’ facets, 156
 InP, 132–133
 InSb, 152
Tysonite-type compounds (RF₃), 342
Tysonite-type solid solution, melt crystallization, 348
Vacuum processing, indium antimonide, 154
Vapor-controlled Czochralski (VCZ), 53, 136
Variable shaping technique, 316–317
Verneuil sapphire growth technique, 300, 302–308
 characterization, 329–330
 crystal quality, 325
 principal scheme of growth, 302–303
 raw material, 303
 stability analysis-based automation, 307–308
 theoretical investigation, 304–305
Vertical Bridgman technique (VBT), 77, 78, 277, 278, 314, 331
 CZT growth, 102
 ZnSe growth, 284
Vertical gradient freeze (VGF) technique, 53–54, 77, 91, 92, 136–138
 advantages, 137
 CdTe single-crystal growth, 244–260
diameter control of GaAs, 53
dislocation density of GaAs, 54
furnace, 137
growth sequence of InP, 137
InSb, 164–165
S-doped InP ingot, 138
temperature distribution in furnace, 260
ZnTe single crystal growth, 292
Void defects, 37, 39, 254
LSI chip fabrication, 37
octahedral, 37
Si crystals, 35, 36
Si wafers, 39
sketch, 37
Volume-of-fluid method, 91
von Mises stresses, calculation, 140
Voronkov’s model, 38
Wafer processing
CdZnTe, 260–265
silicon, 16–18
Wafer size, InSb evolution, 163
Wetting procedure, 197–198
Wetting-line locations, 100
Wide-bandgap II-VI compounds, 269–297
growth from solid phase, 280
liquid encapsulation Czochralski (LEC), 280–280
phase diagrams, 270
see also II-VI compound semiconductors

X-ray CT (computer tomography), 361
X-ray diagnostic machines, 361
X-ray diffraction, 67

YF₃, 342

Zinc
concentration correlation between ICP and wavelength analysis in CZT, 257, 258
p-type dopant, 142
purification, 289
Zinc oxide (ZnO), 269, 282–284
growth from liquid phase, 282–283
growth from vapor phase, 283–284
hydrothermal growth of single crystals, 277, 278
Zinc selenide (ZnSe), 269, 284–291
band-edge emission grown by PVT method, 290
band-edge emissions, 286, 287
crystal grown by Bridgman method, 285, 286
CVD growth method, 284
CVT single crystal growth method, 288
experimental values summary, 286, 287
growth from liquid phase, 284–288
growth from solid phase, 290–291
growth from vapor phase, 288–290
growth velocity and temperature gradient at growth interfaces, 284, 285
purification of selenium, 289
purification of zinc, 289
SSR growth mechanism, 291
Zinc sulfide (ZnS), 269, 280–282
dependence of grain size on annealing atmosphere and temperature, 282
faceting geometry of lattice, 157, 158
growth from liquid phase, 280–281
growth from solid phase, 281–282
growth from vapor phase, 281
lattice, 151
SSR/SPR growth, 281
Zinc telluride (ZnTe), 269, 291–294
grown by KT and GF combination, 292–293
grown by LEC technique, 280
growth from liquid phase, 291–293
growth from vapor phase, 293–294
twin-free single crystals, 293
X-ray rocking curve FWHM, 294
Zincblende structure, 124, 125