A* algorithm, 194
AbYSS, 68
AES (advanced encryption standard), 140
Algorithm GPPE, 7
Algorithmic skeleton, 196
ALife (artificial life), 347
Alphabet with arity, 218
ANOVA test, 72
Ant colony optimization, 267, 408
ARMA, 249
ARMAX model, 124
Artificial neural networks, 15
Artificial vision, 309
Asynchronous parallel cGAs, 58
Auctions, 233
Ausubel auction, 234
AV (artificial vision), 310
B&B-based, 373
Bankruptcy prediction, 6
Beam search, 110, 280, 367
Benchmarks, 92
for DOPs, 92
Best and worst stripe exchange (BW_SE), 389
Best-fit decreasing height (BFDH), 386
Best inherited level recombination (BILX), 389
Bid, 234
Bioinformatic tasks, 268
Bottom-up deterministic tree finite
automaton, 219
Branch and bound, 193, 366
Bucket elimination, 111
Call-by-need, 210
Cellular automata (CA), 325
laser model, 329
Cellular genetic algorithms, 50, 68
Cellular phone networks, 287
CHC, 294–296, 299–302, 304, 305
Chromosome appearance probability matrix
algorithm, 31
Computational grid, 423
Constrained optimization penalty term, 105
bucket elimination, 110
decoder, 104, 105
definition, 103
penalty term, 103
repairing, 104
search in feasible space, 104
soft constraint, 103
symmetries, 111
Constraint programming, 107, 108, 109, 114
Convergence, 66
Cross-generational elitist selection,
heterogeneous recombination, and
cataclysmic mutation, 294, 305
Cryptography, 139
Decisions, 216
Design cycle, FPGA design cycle, 164
Deterministic tree automaton, 219
Diversity, 66
Divide and conquer, 179, 209
DNA fragment assembly problem, 270
DOPs, 84
adaptation cost, 88, 95
DOPs (Continued)
aspect of change, 85, 86
benchmarks, 92
classification, 85
continuous, 86
control influence, 87
cyclic, 87
definition, 84
discrete, 85
effect of the algorithm, 85
frequency of change, 85
metaheuristics, 88
patterns and cycles, 87
presence of patterns, 85
severity of change, 85, 86
solution quality, 88, 93
stages, 85
system influence, 87
DTD (data type document), 449
Dynamic bit-matching, 93
Dynamic job shop scheduling, 93
Dynamic optimization problems, 83
Dynamic programming, 209
Dynamic programming equations, 217
Dynamic programming states, 215
Dynamic travelling salesman problem, 85
EA, 295
EELA, 159
Efficient auction, 240
Error correcting code, 200
Estimation of distribution algorithms, 33
Evolutionary algorithms, 63, 249, 267, 295, 409
Evolutionary computation, 31
Experimental evaluation, 423
benchmarking, 423
dynamic setting, 424
static setting, 423
Feature extraction, construction and selection, 3, 4
FF (forgetting factor), 124, 128, 456, 462
First-fit decreasing height (FFDH), 386
Fitness, 32
FPGA, 309
FPGA channel architecture, 163
FPGA devices, 139
FPGA hierarchical architecture, 162
FPGA island architecture, 163
GA, 294, 296, 299–301, 305
Gene expression profiling, 269
Gene finding and identification, 269
Genetic algorithms, 32, 294, 295, 305, 424, 428
encodings, 428
initial population, 428
operators, 428
Genetic programming, 3, 6
GLite middleware, 169
Golomb rulers, 105
GPPE, 3
GRASP, 107, 108
Grid computing, 159
Grid simulator, 424
event-based simulation, 429
HyperSim-G, 429
GridWay metascheduler, 169
Homogeneous tree language, 219
Hypervolume, 70
IA (infection algorithm), 348
IDEA (international data encryption algorithm), 140
Independent job scheduling, 424
completion time, 427
expected time to compute, 418, 424
flowtime, 427
makespan, 427
optimization criteria, 427
resource utilization, 427
Inverted generational distance, 69
IPO underpricing prediction, 6
Kolmogorov–Smirnov test, 71
Kruskal–Wallis test, 72
Large-scale neighborhood search, 407
Laser, 325
cellular automata-based model, 329
rate equations, 326
Last level rearrange (LLR), 389
Lazy learning, 15
Levene test, 72
Machine learning, 3
Majority merge, 279
Malaga, 303–305
Marginal value, 239
Master-slave, 180
MBF_Adj, 390
Memetic algorithms, 102, 104, 110, 112, 369
Memoization, 210
Memoized, 210
Metaheuristics, 63, 266
for DOPs, 88
information reuse, 89
reinitialization, 89
Metrics, 93
accuracy, 94
adaptation cost, 95
ϵ-reactivity, 95
MHs for DOPs, 93
solution quality, 93
stability, 95
MFF_Adj, 390
Michigan approach, 255
Microarray, 269
Micropopulations, 31
MOCell, 68
Modified next-fit (MNF), 387
Moving parabola, 93
Moving peaks, 93
Moving peaks problem, 86
Multidimensional knapsack problem, 367
Multiobjective optimization, 63
Multiobjective optimization problem, 63
Neural networks, 132
Next-fit decreasing height (NFDH), 386
NSGA-II, 67
OMOPSO, 68
hierarchic mode, 427
simultaneous mode, 427
Parallel cellular genetic algorithms, 49
Parallel implementation of CA laser model, 337
Pareto dominance, 65
Pareto front, 63, 65
Pareto optimality, 65
Pareto optimal set, 63, 65
Particle swarm optimization, 68
Penalty term, 103
Performance of parallel CA laser model, 340
Personal value, 239
Phylogenetic analysis, 270
Piece exchange (PE), 389
Policies, 216
Policy, 216
Polyadic problems, 218
Polynomial mutation, 67
Population-based incremental learning, 33
Prediction, 123, 462
Principle of optimality, 217
Problem, 103
consensus tree, 112
Golomb ruler, 105
maximum density still life problem, 108
multidimensional knapsack, 104, 105
phylogenetic inference, 112
p-median, 56
protein structure prediction, 104
vertex cover, 103
Pure, 210
PVM (parallel virtual machine), 337
Quality indicators, 69
Radial basis neural networks, 16
Radio coverage problem, 292, 293
Radio network design, 305
Ranked alphabet, 218
Rastrigin function, 41
RC6 symmetric cryptographic algorithm, 143
RND, 288, 289, 293–295, 297, 299–301, 305
ROS (remote optimization service), 443
Rules for the initial seeding, 390
SA, 294, 295, 299, 300, 305
Scalability of parallel CA laser model, 343
Scatter search, 68, 108, 268
Shortest common supersequence problem, 277
Search algorithms, 193
SI (system identification), 123, 462
Simulated annealing, 267, 294, 305
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated binary crossover</td>
<td>67</td>
</tr>
<tr>
<td>Sincere bidding</td>
<td>239</td>
</tr>
<tr>
<td>Skeleton</td>
<td>180</td>
</tr>
<tr>
<td>SOAP</td>
<td>448</td>
</tr>
<tr>
<td>Software tools</td>
<td>179</td>
</tr>
<tr>
<td>Solution merging</td>
<td>407</td>
</tr>
<tr>
<td>SPEA2</td>
<td>68</td>
</tr>
<tr>
<td>Spread</td>
<td>70</td>
</tr>
<tr>
<td>Stages</td>
<td>85</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>71</td>
</tr>
<tr>
<td>Stereo matching</td>
<td>347</td>
</tr>
<tr>
<td>Stripe exchange (SE)</td>
<td>389</td>
</tr>
<tr>
<td>Structure prediction</td>
<td>269</td>
</tr>
<tr>
<td>Substitutes in consumptions</td>
<td>239</td>
</tr>
<tr>
<td>Synergies</td>
<td>241</td>
</tr>
<tr>
<td>System identification</td>
<td>127, 455</td>
</tr>
<tr>
<td>Tabu search</td>
<td>107, 108, 110, 267</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>287</td>
</tr>
<tr>
<td>Terms</td>
<td>219</td>
</tr>
<tr>
<td>Three-stage level packing patterns</td>
<td>385</td>
</tr>
<tr>
<td>Time series</td>
<td>249</td>
</tr>
<tr>
<td>Time-varying knapsack</td>
<td>93</td>
</tr>
<tr>
<td>Tree automaton with costs</td>
<td>220</td>
</tr>
<tr>
<td>Tree language</td>
<td>218</td>
</tr>
<tr>
<td>Tree search algorithms</td>
<td>193</td>
</tr>
<tr>
<td>TS (time series)</td>
<td>123, 462</td>
</tr>
<tr>
<td>Two-dimensional cutting stock</td>
<td>201</td>
</tr>
<tr>
<td>Two-dimensional strip packing problem</td>
<td>(2SPP), 385</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>71</td>
</tr>
<tr>
<td>Stereo matching</td>
<td>347</td>
</tr>
<tr>
<td>Stripe exchange (SE)</td>
<td>389</td>
</tr>
<tr>
<td>Structure prediction</td>
<td>269</td>
</tr>
<tr>
<td>Substitutes in consumptions</td>
<td>239</td>
</tr>
<tr>
<td>Synergies</td>
<td>241</td>
</tr>
<tr>
<td>System identification</td>
<td>127, 455</td>
</tr>
<tr>
<td>Tabu search</td>
<td>107, 108, 110, 267</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>287</td>
</tr>
<tr>
<td>Terms</td>
<td>219</td>
</tr>
<tr>
<td>Three-stage level packing patterns</td>
<td>385</td>
</tr>
<tr>
<td>Time series</td>
<td>249</td>
</tr>
<tr>
<td>Time-varying knapsack</td>
<td>93</td>
</tr>
<tr>
<td>Tree automaton with costs</td>
<td>220</td>
</tr>
<tr>
<td>Tree language</td>
<td>218</td>
</tr>
<tr>
<td>Tree search algorithms</td>
<td>193</td>
</tr>
<tr>
<td>TS (time series)</td>
<td>123, 462</td>
</tr>
<tr>
<td>Two-dimensional cutting stock</td>
<td>201</td>
</tr>
<tr>
<td>Two-dimensional strip packing problem</td>
<td>(2SPP), 385</td>
</tr>
<tr>
<td>Unrestricted two-dimensional cutting stock problem (U2DCSP)</td>
<td>221</td>
</tr>
<tr>
<td>Variable neighborhood search</td>
<td>265</td>
</tr>
<tr>
<td>Weighted majority merge</td>
<td>279</td>
</tr>
<tr>
<td>WEKA</td>
<td>258</td>
</tr>
<tr>
<td>Welch test</td>
<td>72</td>
</tr>
<tr>
<td>Wrapper design pattern</td>
<td>446, 450</td>
</tr>
<tr>
<td>XML</td>
<td>443</td>
</tr>
</tbody>
</table>