CONTENTS

CONTRIBUTORS xv
FOREWORD xix
PREFACE xxi

PART I METHODOLOGIES FOR COMPLEX PROBLEM SOLVING 1

1 Generating Automatic Projections by Means of Genetic Programming 3
C. Estébanez and R. Aler
1.1 Introduction 3
1.2 Background 4
1.3 Domains 6
1.4 Algorithmic Proposal 6
1.5 Experimental Analysis 9
1.6 Conclusions 11
References 13

2 Neural Lazy Local Learning 15
J. M. Valls, I. M. Galván, and P. Isasi
2.1 Introduction 15
2.2 Lazy Radial Basis Neural Networks 17
2.3 Experimental Analysis 22
2.4 Conclusions 28
References 30

3 Optimization Using Genetic Algorithms with Micropopulations 31
Y. Sáez
3.1 Introduction 31
3.2 Algorithmic Proposal 33
3.3 Experimental Analysis: The Rastrigin Function 40
3.4 Conclusions 44
References 45
4 Analyzing Parallel Cellular Genetic Algorithms
G. Luque, E. Alba, and B. Dorronsoro

4.1 Introduction
4.2 Cellular Genetic Algorithms
4.3 Parallel Models for cGAs
4.4 Brief Survey of Parallel cGAs
4.5 Experimental Analysis
4.6 Conclusions
References

5 Evaluating New Advanced Multiobjective Metaheuristics
A. J. Nebro, J. J. Durillo, F. Luna, and E. Alba

5.1 Introduction
5.2 Background
5.3 Description of the Metaheuristics
5.4 Experimental Methodology
5.5 Experimental Analysis
5.6 Conclusions
References

6 Canonical Metaheuristics for Dynamic Optimization Problems
G. Leguizamón, G. Ordóñez, S. Molina, and E. Alba

6.1 Introduction
6.2 Dynamic Optimization Problems
6.3 Canonical MHs for DOPs
6.4 Benchmarks
6.5 Metrics
6.6 Conclusions
References

7 Solving Constrained Optimization Problems with Hybrid Evolutionary Algorithms
C. Cotta and A. J. Fernández

7.1 Introduction
7.2 Strategies for Solving CCOPs with HEAs
7.3 Study Cases
7.4 Conclusions
References

8 Optimization of Time Series Using Parallel, Adaptive, and Neural Techniques
J. A. Gómez, M. D. Jaraíz, M. A. Vega, and J. M. Sánchez

8.1 Introduction
8.2 Time Series Identification
8.3 Optimization Problem 125
8.4 Algorithmic Proposal 130
8.5 Experimental Analysis 132
8.6 Conclusions 136
References 136

9 Using Reconfigurable Computing for the Optimization of Cryptographic Algorithms 139
J. M. Granado, M. A. Vega, J. M. Sánchez, and J. A. Gómez

9.1 Introduction 139
9.2 Description of the Cryptographic Algorithms 140
9.3 Implementation Proposal 144
9.4 Experimental Analysis 153
9.5 Conclusions 154
References 155

10 Genetic Algorithms, Parallelism, and Reconfigurable Hardware 159
J. M. Sánchez, M. Rubio, M. A. Vega, and J. A. Gómez

10.1 Introduction 159
10.2 State of the Art 161
10.3 FPGA Problem Description and Solution 162
10.4 Algorithmic Proposal 169
10.5 Experimental Analysis 172
10.6 Conclusions 177
References 177

11 Divide and Conquer: Advanced Techniques 179
C. León, G. Miranda, and C. Rodríguez

11.1 Introduction 179
11.2 Algorithm of the Skeleton 180
11.3 Experimental Analysis 185
11.4 Conclusions 189
References 190

C. León, G. Miranda, and C. Rodríguez

12.1 Introduction 193
12.2 Background 195
12.3 Algorithmic Skeleton for Tree Searches 196
12.4 Experimentation Methodology 199
12.5 Experimental Results 202
12.6 Conclusions 205
References 206
13 Tools for Tree Searches: Dynamic Programming
C. León, G. Miranda, and C. Rodríguez

13.1 Introduction
13.2 Top-Down Approach
13.3 Bottom-Up Approach
13.4 Automata Theory and Dynamic Programming
13.5 Parallel Algorithms
13.6 Dynamic Programming Heuristics
13.7 Conclusions
References

PART II APPLICATIONS

14 Automatic Search of Behavior Strategies in Auctions
D. Quintana and A. Mochón

14.1 Introduction
14.2 Evolutionary Techniques in Auctions
14.3 Theoretical Framework: The Ausubel Auction
14.4 Algorithmic Proposal
14.5 Experimental Analysis
14.6 Conclusions
References

15 Evolving Rules for Local Time Series Prediction
C. Luque, J. M. Valls, and P. Isasi

15.1 Introduction
15.2 Evolutionary Algorithms for Generating Prediction Rules
15.3 Experimental Methodology
15.4 Experiments
15.5 Conclusions
References

16 Metaheuristics in Bioinformatics: DNA Sequencing and Reconstruction
C. Cotta, A. J. Fernández, J. E. Gallardo, G. Luque, and E. Alba

16.1 Introduction
16.2 Metaheuristics and Bioinformatics
16.3 DNA Fragment Assembly Problem
16.4 Shortest Common Supersequence Problem
16.5 Conclusions
References
17 Optimal Location of Antennas in Telecommunication Networks 287
G. Molina, F. Chicano, and E. Alba

17.1 Introduction 287
17.2 State of the Art 288
17.3 Radio Network Design Problem 292
17.4 Optimization Algorithms 294
17.5 Basic Problems 297
17.6 Advanced Problem 303
17.7 Conclusions 305
References 306

18 Optimization of Image-Processing Algorithms Using FPGAs 309
M. A. Vega, A. Gómez, J. A. Gómez, and J. M. Sánchez

18.1 Introduction 309
18.2 Background 310
18.3 Main Features of FPGA-Based Image Processing 311
18.4 Advanced Details 312
18.5 Experimental Analysis: Software Versus FPGA 321
18.6 Conclusions 322
References 323

19 Application of Cellular Automata Algorithms to the Parallel Simulation of Laser Dynamics 325
J. L. Guisado, F. Jiménez-Morales, J. M. Guerra, and F. Fernández

19.1 Introduction 325
19.2 Background 326
19.3 Laser Dynamics Problem 328
19.4 Algorithmic Proposal 329
19.5 Experimental Analysis 331
19.6 Parallel Implementation of the Algorithm 336
19.7 Conclusions 344
References 344

20 Dense Stereo Disparity from an Artificial Life Standpoint 347
G. Olague, F. Fernández, C. B. Pérez, and E. Lutton

20.1 Introduction 347
20.2 Infection Algorithm with an Evolutionary Approach 351
20.3 Experimental Analysis 360
20.4 Conclusions 363
References 363

21 Exact, Metaheuristic, and Hybrid Approaches to Multidimensional Knapsack Problems 365
J. E. Gallardo, C. Cotta, and A. J. Fernández

21.1 Introduction 365
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.2 Multidimensional Knapsack Problem</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>21.3 Hybrid Models</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>21.4 Experimental Analysis</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>21.5 Conclusions</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>380</td>
</tr>
<tr>
<td>22</td>
<td>Greedy Seeding and Problem-Specific Operators for GAs Solution of</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Strip Packing Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Salto, J. M. Molina, and E. Alba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.1 Introduction</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>22.2 Background</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>22.3 Hybrid GA for the 2SPP</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>22.4 Genetic Operators for Solving the 2SPP</td>
<td>388</td>
</tr>
<tr>
<td></td>
<td>22.5 Initial Seeding</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>22.6 Implementation of the Algorithms</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>22.7 Experimental Analysis</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>22.8 Conclusions</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>404</td>
</tr>
<tr>
<td>23</td>
<td>Solving the KCT Problem: Large-Scale Neighborhood Search and</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Solution Merging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Blum and M. J. Blesa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.1 Introduction</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>23.2 Hybrid Algorithms for the KCT Problem</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>23.3 Experimental Analysis</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>23.4 Conclusions</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>419</td>
</tr>
<tr>
<td>24</td>
<td>Experimental Study of GA-Based Schedulers in Dynamic Distributed</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Computing Environments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Xhafa and J. Carretero</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.1 Introduction</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>24.2 Related Work</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>24.3 Independent Job Scheduling Problem</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>24.4 Genetic Algorithms for Scheduling in Grid Systems</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>24.5 Grid Simulator</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>24.6 Interface for Using a GA-Based Scheduler with the Grid</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.7 Experimental Analysis</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>24.8 Conclusions</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>439</td>
</tr>
<tr>
<td>25</td>
<td>Remote Optimization Service</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>J. Garcia-Nieto, F. Chicano, and E. Alba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.1 Introduction</td>
<td>443</td>
</tr>
</tbody>
</table>

21.2 Multidimensional Knapsack Problem
21.3 Hybrid Models
21.4 Experimental Analysis
21.5 Conclusions
References

22 Greedy Seeding and Problem-Specific Operators for GAs Solution of Strip Packing Problems
C. Salto, J. M. Molina, and E. Alba

22.1 Introduction
22.2 Background
22.3 Hybrid GA for the 2SPP
22.4 Genetic Operators for Solving the 2SPP
22.5 Initial Seeding
22.6 Implementation of the Algorithms
22.7 Experimental Analysis
22.8 Conclusions
References

23 Solving the KCT Problem: Large-Scale Neighborhood Search and Solution Merging
C. Blum and M. J. Blesa

23.1 Introduction
23.2 Hybrid Algorithms for the KCT Problem
23.3 Experimental Analysis
23.4 Conclusions
References

24 Experimental Study of GA-Based Schedulers in Dynamic Distributed Computing Environments
F. Xhafa and J. Carretero

24.1 Introduction
24.2 Related Work
24.3 Independent Job Scheduling Problem
24.4 Genetic Algorithms for Scheduling in Grid Systems
24.5 Grid Simulator
24.6 Interface for Using a GA-Based Scheduler with the Grid Simulator
24.7 Experimental Analysis
24.8 Conclusions
References

25 Remote Optimization Service
J. Garcia-Nieto, F. Chicano, and E. Alba

25.1 Introduction
25.2 Background and State of the Art 444
25.3 ROS Architecture 446
25.4 Information Exchange in ROS 448
25.5 XML in ROS 449
25.6 Wrappers 450
25.7 Evaluation of ROS 451
25.8 Conclusions 454
References 455

26 Remote Services for Advanced Problem Optimization 457
J. A. Gómez, M. A. Vega, J. M. Sánchez, J. L. Guisado,
D. Lombrana, and F. Fernández

26.1 Introduction 457
26.2 SIRVA 458
26.3 MOSET and TIDESI 462
26.4 ABACUS 465
References 470

INDEX 473