Contents

Foreword xi
Richard Templeton

Foreword xiii
Hans Stork

Preface xv

Acknowledgments xvii

CHAPTER 1 THE BIG PICTURE 1
1. What is a chip? 1
2. What are the requirements of a successful chip design? 3
3. What are the challenges in today’s very deep submicron (VDSM), multimillion gate designs? 4
4. What major process technologies are used in today’s design environment? 5
5. What are the goals of new chip design? 8
6. What are the major approaches of today’s very large scale integration (VLSI) circuit design practices? 9
7. What is standard cell-based, application-specific integrated circuit (ASIC) design methodology? 11
8. What is the system-on-chip (SoC) approach? 12
9. What are the driving forces behind the SoC trend? 15
10. What are the major tasks in developing a SoC chip from concept to silicon? 15
11. What are the major costs of developing a chip? 16

CHAPTER 2 THE BASICS OF THE CMOS PROCESS AND DEVICES 17
12. What are the major process steps in building MOSFET transistors? 17
13. What are the two types of MOSFET transistors? 19
14. What are base layers and metal layers? 20
15. What are wafers and dies? 24
16. What is semiconductor lithography? 28
17. What is a package? 33

CHAPTER 3 THE CHALLENGES IN VLSI CIRCUIT DESIGN 41
18. What is the role of functional verification in the IC 41
design process?
19. What are some of the design integrity issues? 44
20. What is design for testability? 46
21. Why is reducing the chip’s power consumption so important? 48
22. What are some of the challenges in chip packaging? 49
23. What are the advantages of design reuse? 50
24. What is hardware/software co-design? 51
25. Why is the clock so important? 54
26. What is the leakage current problem? 57
27. What is design for manufacturability? 60
28. What is chip reliability? 62
29. What is analog integration in the digital environment? 65
30. What is the role of EDA tools in IC design? 67
31. What is the role of the embedded processor in the SoC 69
environment?

CHAPTER 4 CELL-BASED ASIC DESIGN METHODOLOGY 73
32. What are the major tasks and personnel required in a chip 73
design project?
33. What are the major steps in ASIC chip construction? 74
34. What is the ASIC design flow? 75
35. What are the two major aspects of ASIC design flow? 77
36. What are the characteristics of good design flow? 80
37. What is the role of market research in an ASIC project? 81
38. What is the optimal solution of an ASIC project? 82
39. What is system-level study of a project? 84
40. What are the approaches for verifying design at the 85
system level?
41. What is register-transfer-level (RTL) system-level description? 86
42. What are methods of verifying design at the register-transfer- 87
level?
43. What is a test bench? 88
44. What is code coverage? 89
45. What is functional coverage? 89
46. What is bug rate convergence? 90
47. What is design planning? 91
48. What are hard macro and soft macro? 92
49. What is hardware description language (HDL)? 92
50. What is register-transfer-level (RTL) description of hardware? 93
51. What is standard cell? What are the differences among standard cell, gate-array, and sea-of-gate approaches? 94
52. What is an ASIC library? 103
53. What is logic synthesis? 105
54. What are the optimization targets of logic synthesis? 106
55. What is schematic or netlist? 107
56. What is the gate count of a design? 111
57. What is the purpose of test insertion during logic synthesis? 111
58. What is the most commonly used model in VLSI circuit testing? 112
59. What are controllability and observability in a digital circuit? 114
60. What is a testable circuit? 115
61. What is the aim of scan insertion? 116
62. What is fault coverage? What is defect part per million (DPPM)? 117
63. Why is design for testability important for a product’s financial success? 119
64. What is chip power usage analysis? 120
65. What are the major components of CMOS power consumption? 121
66. What is power optimization? 123
67. What is VLSI physical design? 123
68. What are the problems that make VLSI physical design so challenging? 124
69. What is floorplanning? 128
70. What is the placement process? 131
71. What is the routing process? 133
72. What is a power network? 135
73. What is clock distribution? 139
74. What are the key requirements for constructing a clock tree? 143
75. What is the difference between time skew and length skew in a clock tree? 145
76. What is scan chain? 149
77. What is scan chain reordering? 151
78. What is parasitic extraction? 152
79. What is delay calculation? 155
80. What is back annotation? 156
81. What kind of signal integrity problems do place and route
tools handle?
82. What is cross-talk delay? 157
83. What is cross-talk noise? 158
84. What is IR drop? 159
85. What are the major netlist formats for design representation? 162
86. What is gate-level logic verification before tapeout? 162
87. What is equivalence check? 163
88. What is timing verification? 164
89. What is design constraint? 165
90. What is static timing analysis (STA)? 165
91. What is simulation approach on timing verification? 169
92. What is the logical-effort-based timing closure approach? 173
93. What is physical verification? 178
94. What are design rule check (DRC), design verification (DV), and geometry verification (GV)? 179
95. What is schematic verification (SV) or layout versus schematic (LVS)? 181
96. What is automatic test pattern generation (ATPG)? 182
97. What is tapeout? 184
98. What is yield? 184
99. What are the qualities of a good IC implementation designer? 187

Conclusion 189

Acronyms 191

Bibliography 195

Index 199