Contents

Preface XVII

List of Contributors XIX

1 Transition-metal Nanoparticles in Catalysis: From Historical Background to the State-of-the Art 1

Didier Astruc

1.1 Introduction 1
1.2 Historical Background 4
1.3 Polymers as NP Stabilizers 7
1.4 Dendrimers as NP Stabilizers 11
1.5 Ligand Stabilization of NPs 16
1.6 “Ligand-free” Heck Reactions using Low Pd-Loading 18
1.7 The Roles of Micelles, Microemulsions, Surfactants and Aerogels 20
1.8 Ionic Liquid Media for Catalysis by NPs 22
1.9 Oxide Supports for NP Catalysts 24
1.10 Carbon Supports for NP Catalysts 28
1.11 NPs of Noble Metals (Ru, Rh, Pd, Pt and Their Oxides) in Catalysis 30
1.12 Gold Nanoparticle-based Catalysts 30
1.13 Environmental Problems: NOx Pollution and How to Remove NOx Using NP Catalysis 34
1.14 Hydrocarbon Reforming: Activation of Hydrocarbons by NP Catalysts 34
1.15 Surface Organometallic Chemistry on Metal NPs 36
1.16 Application and Perspectives in Organic Chemistry 36
1.17 Conclusion 37

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Synthesis and Characterization of Dendrimer Encapsulated Nanoparticles</td>
<td>132</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Synthetic Schemes and Nomenclature</td>
<td>132</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Bimetallic Nanoparticles</td>
<td>133</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Core–Shell Nanoparticles</td>
<td>135</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Characterization</td>
<td>136</td>
</tr>
<tr>
<td>4.3</td>
<td>Homogeneous Catalysis</td>
<td>139</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Monometallic Catalysts</td>
<td>139</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Bimetallic Catalysts</td>
<td>140</td>
</tr>
<tr>
<td>4.4</td>
<td>Supported Dendrimer Templated Nanoparticles</td>
<td>142</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Immobilized Intact DENs</td>
<td>143</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Electrocatlysis by Immobilized Intact DENs</td>
<td>143</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Construction of DENs on Oxide Surfaces</td>
<td>144</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>DEN Deposition onto Oxide Supports</td>
<td>145</td>
</tr>
<tr>
<td>4.4.2</td>
<td>High Temperature Dendrimer Removal</td>
<td>145</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Models for Dendrimer Removal</td>
<td>148</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>Low Temperature Dendrimer Removal</td>
<td>149</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Monometallic Dendrimer Templated Nanoparticle Catalysts</td>
<td>151</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Supported Bimetallic Dendrimer Templated Nanoparticles</td>
<td>152</td>
</tr>
<tr>
<td>4.4.4.1</td>
<td>Infrared Spectroscopy of Supported Bimetallic Dendrimer Templated Nanoparticles</td>
<td>152</td>
</tr>
<tr>
<td>4.4.4.2</td>
<td>Catalysis by Supported Bimetallic Dendrimer Templated Nanoparticles</td>
<td>153</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary, Outlook, and Links Between Homogeneous and Heterogeneous Catalysis</td>
<td>156</td>
</tr>
</tbody>
</table>

5 Aerogel Supported Nanoparticles in Catalysis | 161

Adelina Vallribera and Elies Molins

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>161</td>
</tr>
<tr>
<td>5.2</td>
<td>Aerogel Nanocomposites as Catalysts of Important Reactions in Gaseous Media</td>
<td>166</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Fischer–Tropsch Synthesis</td>
<td>166</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Steam Reforming</td>
<td>166</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Oxidation Processes</td>
<td>167</td>
</tr>
<tr>
<td>5.2.3.1</td>
<td>Oxidation of Carbon Monoxide</td>
<td>167</td>
</tr>
<tr>
<td>5.2.3.2</td>
<td>Methanol Oxidation</td>
<td>168</td>
</tr>
<tr>
<td>5.2.3.3</td>
<td>n-Butane Oxidation</td>
<td>168</td>
</tr>
<tr>
<td>5.2.3.4</td>
<td>Volatile Organic Compounds Oxidation</td>
<td>169</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Dehydrochlorination of Chlorinated Volatile Organic Compounds</td>
<td>170</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Oxygen Reduction Reaction</td>
<td>170</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Cyclohexene Hydrogenation</td>
<td>172</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Isomerization of 1-Butene</td>
<td>173</td>
</tr>
<tr>
<td>5.3</td>
<td>Aerogel Nanocomposites as Catalysts of Important Reactions in Liquid Media</td>
<td>173</td>
</tr>
</tbody>
</table>
5.3.1 Oxidation of Olefins 173
 5.3.1.1 Dihydroxylation of Olefins 173
 5.3.1.2 Epoxidation of Olefins 176
5.3.2 Claisen–Schmidt Condensation 179
5.3.3 Mizoroki–Heck C–C Coupling Reactions 179
5.3.4 Hydrocarbonylation of Aryl Halides 185
5.3.5 Michael Additions 187
5.3.6 Synthesis of Carbon Nanotubes 190

6 Transition-metal Nanoparticle Catalysis in Imidazolium Ionic Liquids 195
 Jairton Dupont and Dagoberto de Oliveira Silva
 6.1 Introduction 195
 6.2 Ionic Liquids: Structural Aspects 196
 6.3 Formation of Nanoparticles in Imidazolium Ionic Liquids 198
 6.4 Stabilization of the Metal Nanoparticles in Imidazolium Ionic Liquids 202
 6.4.1 Analysis of the Isolated Nanoparticles (XRD and XPS) 203
 6.4.2 Analysis of the MNPs Dispersed in Ionic Liquids 204
 6.4.3 H/D and D/H Labeling Experiments 207
 6.4.4 MNPs in Ionic Liquid/Additive Ligands or Polymeric Stabilizers 207
 6.5 Catalytic Properties of Transition-metal Nanoparticles in Ionic Liquids 208
 6.5.1 Hydrogenation of Alkenes and Ketones 209
 6.5.2 Hydrogenation of Ketones 211
 6.5.3 Hydrogenations of Arenes 211
 6.5.4 Miscellaneous Reactions 213
 6.6 Conclusions and Perspectives 213

7 Carbon and Silicon Carbide Nanotubes Containing Catalysts 219
 Cuong Pham-Huu, Ovidiu Ersen, and Marc-Jacques Ledoux
 7.1 Introduction 219
 7.2 Carbon and SiC Nanotubes/Nanofibers 221
 7.2.1 Carbon Nanotubes and Nanofibers 221
 7.2.2 Direct Macroscopic Shaping of Carbon Nanotubes 226
 7.2.2.1 Self-supported Carbon Nanotubes through Constraint Synthesis 226
 7.2.2.2 Parallel and Patterned Carbon Nanotubes by Pyrolysis of Organic Compounds 228
 7.2.3 Carbon Nanotubes Growth on Periodically Patterned Structure 230
 7.2.4 Structural Ordering Assisted by Thermal Treatment 232
 7.2.5 SiC Nanotubes and Nanofibers 234
 7.3 One-dimensional Conductive Materials for Catalysis 235
 7.3.1 Carbon Nanotubes Containing Nanoparticle Catalysts 236
7.3.1.1 Pd/CNTs Catalyst Characteristics 236
7.3.1.2 Hydrogenation of the C=C Bond in the Liquid Phase 241
7.3.1.3 Selective Hydrogenation of Nitrobenzene to Aniline in the Liquid Phase 242
7.3.1.4 Selective Oxidative Dehydrogenation (ODH) of Dihydroanthracene to Anthracene 243
7.3.2 SiC Nanotubes Containing Nanoparticles Catalysts 246
7.3.2.1 Selective Oxidation of H₂S to Elemental Sulfur in a Trickle-bed 246
7.4 Conclusion 247
7.5 Outlook 249

8 Size-selective Synthesis of Nanostructured Metal and Metal Oxide Colloids and Their Use as Catalysts 253
Manfred T. Reetz
8.1 Introduction 253
8.1.1 General Comments on Catalysis using Transition Metal Nanoparticles 253
8.2 Size- and Shape-selective Preparation of Metal Nanoparticles in the Zerovalent Form 254
8.3 Preparation and Application of Aqueous Colloids of Metal Oxide and Multimetal Oxide Nanoparticles 264
8.4 Conclusion 272

9 Multimetallic Nanoparticles Prepared by Redox Processes Applied in Catalysis 279
Florence Epron, Catherine Especel, Gwendoline Lafaye, and Patrice Marécot
9.1 Introduction 279
9.2 General Aspects 279
9.2.1 Preparation of Bimetallic Catalysts by Direct Redox Reaction 280
9.2.2 Redox Reactions of Adsorbed Species in the Preparation of Bimetallic Catalysts 281
9.2.3 Catalytic Reduction in the Preparation of Bimetallic Catalysts 282
9.2.4 Underpotential Deposition 282
9.3 Practical Aspects 283
9.3.1 Stability of Supported Catalysts in the Aqueous Phase 283
9.3.2 Study of the Deposition Reaction 285
9.3.2.1 On Bulk Catalysts 285
9.3.2.2 On Supported Catalysts 286
9.3.3 Characterization of the Metal–Metal Interaction 288
9.3.3.1 Model Reactions 288
9.3.3.2 Adsorption of Probe Molecules 288
9.3.3.3 Physical Techniques 289
9.3.4 Influence of the Gaseous Environment on the Nanoparticle Stability 291
9.4 Applications in the Synthesis of Organic Chemicals 292
9.4.1 Selective Hydrogenation 292
9.4.1.1 Competition Between C=ð and C=O Bonds 293
9.4.1.2 Competition Between C=ð Bonds 295
9.4.2 Selective Hydrogenolysis 295
9.5 Applications in Environmental Catalysis 296
9.6 Applications in Catalysis for Energy 297
9.6.1 Naphtha Reforming 297
9.6.2 Fuel Cells 299
9.7 Conclusion 300

10 The Role of Palladium Nanoparticles as Catalysts for Carbon–Carbon Coupling Reactions 303
Laurent Djakovitch, Klaus Köhler, and Johannes G. de Vries
10.1 Introduction 303
10.2 Stable Palladium Colloids and Nanoparticles 303
10.2.1 Palladium Colloids in the Heck Reaction 305
10.2.2 Palladium Colloids in Other C−C Coupling Reactions 314
10.3 Ligand-free Palladium Catalysts 316
10.3.1 The Ligand-free Heck Reaction 316
10.3.2 Ligand-free Palladium as Catalyst in Other C−C Bond Forming Reactions 321
10.4 Palladacycles, Pincers and Other Palladium Complexes as Precursors of Palladium Nanoclusters 323
10.5 Palladium Supported on Solids as Catalysts for Carbon–Carbon Coupling Reactions 327
10.5.1 Heck Coupling by Supported (Solid) Pd Catalysts – General Motivation 328
10.5.2 Progress in Heck Reactions Catalyzed by Palladium Supported on Solids – Activation of Bromobenzene and Aryl Chlorides 329
10.5.2.1 Heck Reactions of Non-activated Aryl Bromides 330
10.5.2.2 Reactions of Aryl Chlorides 332
10.5.3 Conclusions from the Literature Reports 334
10.5.3.1 Properties of the Catalyst 334
10.5.3.2 Importance of Reaction Conditions 334
10.5.3.3 Potential for Practical Applications 335
10.5.4 Supported Palladium Catalysts in Other Coupling Reactions 335
10.5.5 Mechanistic Aspects of Heck (and Related) Reactions by (Supported) Nanoparticles: Homogeneous or Heterogeneous Catalysis? 336
10.5.5.1 Mechanistic Cycle 340
10.6 Conclusions 342
11 Rhodium and Ruthenium Nanoparticles in Catalysis 349
Alain Roucoux, Audrey Nowicki, and Karine Philippot
11.1 Introduction 349
11.2 Generalities on the Synthesis and the Stabilization Modes of Nanoparticles 350
11.3 Rh and Ru Nanoparticles as Catalysts in Hydrogenation Reactions 351
11.3.1 Hydrogenation of Unsaturated Hydrocarbons 352
11.3.1.1 Polymer Stabilized Rh and Ru Nanoparticles 352
11.3.1.2 Hydrogenation of Compounds with C=C Bonds 352
11.3.1.3 Hydrogenation of Aromatic Compounds 354
11.3.1.4 Surfactant-stabilized Rh and Ru Nanoparticles 354
11.3.1.4.1 Hydrogenation of Compounds with C=C Bonds 354
11.3.1.4.2 Hydrogenation of Aromatic Compounds 356
11.3.1.5 Polyoxoanion-stabilized Rh and Ru Nanoparticles 363
11.3.1.5.1 Hydrogenation of Compounds with C=C Bonds 366
11.3.1.5.2 Hydrogenation of Aromatic Compounds 366
11.3.1.6 Dendrimer- or Cyclodextrin-stabilized Rh and Ru Nanoparticles 368
11.3.1.6.1 Dendrimer-stabilized Rh and Ru Nanoparticles 368
11.3.1.6.2 Cyclodextrin-stabilized Rh and Ru Nanoparticles 369
11.3.2 Hydrogenation of Compounds with C=O Bonds 371
11.3.3 Hydrogenation of Aromatic Nitro Compounds 376
11.4 Catalytic Formation of C–C Bonds 377
11.4.1 Hydroformylation of Olefins 378
11.4.2 Methanol Carbonylation 379
11.4.3 Coupling Reactions 380
11.4.4 Pauson–Khand Reaction 381
11.5 Other Reactions 382
11.5.1 Hydrocarbon Oxidation 382
11.5.2 Dehydrocoupling of Amine–Borane Adducts 382
11.5.3 Hydrosilylation 384
11.6 Conclusion 384

12 Supported Gold Nanoparticles as Oxidation Catalysts 389
Avelino Corma and Hermenegildo Garcia
12.1 Introduction 389
12.2 Nanoparticles and Their Properties 390
12.2.1 Surface Chemistry and Nanoparticles 390
12.2.2 Properties of Nanoparticles 392
12.2.3 Stabilized Gold Nanoparticles 397
12.3 Influence of the Support on the Catalytic Activity of Supported Gold Nanoparticles 401
12.4 Sustainability and Green Chemistry 404
12.5 Alcohol Oxidation in Organic Chemistry 406
12.6 Related Precedents to the Use of Gold Catalysts for the Aerobic Oxidation of Alcohols 408
12.7 Gold Nanoparticles Supported on Ceria Nanoparticles 409
12.8 Gold vs. Palladium Catalysts for the Aerobic Oxidation of Alcohols 412
12.9 Reaction Mechanism of Gold-catalyzed Alcohol Oxidations 415
12.10 Influence of the Solvent on Aerobic Oxidation 419
12.11 Conclusions and Future Prospects 421

13 Gold Nanoparticles-catalyzed Oxidations in Organic Chemistry 427
Cristina Della Pina, Ermelinda Falletta, and Michele Rossi
13.1 Introduction 427
13.2 Catalyst Preparation 427
13.3 Size-dependent Properties of Gold 428
13.3.1 Supported Particles 429
13.3.2 Unsupported Particles 430
13.4 Oxidation Mechanism 435
13.4.1 Metal–Support Interaction 436
13.4.2 Kinetic Data and Molecular Mechanism 436
13.5 Gold Catalysis for Selective Oxidation 438
13.6 Liquid Phase Oxidation of the Alcoholic Group 440
13.6.1 Oxidation of Diols 441
13.6.2 Oxidation of Other Polyols 444
13.6.2.1 Glycerol 444
13.6.2.2 Sorbitol 445
13.6.2.3 Oxidation of Other Alcohols 446
13.6.2.4 Oxidation of Aminoalcohols 446
13.7 Oxidation of Aldehydes 447
13.8 Oxidation of Glucose 448
13.8.1 Oxidation to Sodium Gluconate 449
13.8.2 Oxidation to Free Gluconic Acid 450
13.9 Perspective for Gold Catalysis in Liquid Phase Oxidation 452
13.10 Conclusions 453

14 Au NP-catalysed Propene Epoxidation by Dioxygen and Dihydrogen 457
Jun Kawahara and Masatake Haruta
14.1 Introduction 457
14.2 Catalyst Preparation and Catalytic Tests 459
14.3 Au/TiO₂ 462
14.3.1 Effect of the Crystal Structure of TiO₂ 462
14.3.2 Contact Structure of Au Nanoparticles with the TiO$_2$ Supports 463
14.3.3 Size Effect of Au Particles 464
14.3.4 Reaction Pathways for Propene Epoxidation over Au/TiO$_2$ 465
14.4 Au/Ti-SiO$_2$ 466
14.4.1 Effect of Pore Structure and Pore Size of Titanium Silicate Support 466
14.4.2 Effect of Reactant Concentrations 467
14.4.3 Surface Treatments and Promoters 467
14.4.4 Reaction Pathways for Propene Epoxidation over Promoted Au/Ti-SiO$_2$ 469
14.5 Conclusions 471

15 Gold Nanoparticles: Recent Advances in CO Oxidation 475
Catherine Louis
15.1 Introduction 475
15.2 Preparation of Supported Gold Catalysts 478
15.3 Main Parameters Influencing the Catalytic Behavior of Gold Supported on Metal Oxides in CO Oxidation 479
15.3.1 Preliminary Remarks 479
15.3.2 Gold Particle Size 480
15.3.3 Nature of the Support 480
15.3.4 Water in the Gas Feed or in the Catalyst 481
15.3.5 Conditions of Activation of Gold Catalysts and State of Gold in Active Catalysts 482
15.4 Properties of Gold Nanoparticles (Free or Supported) 483
15.4.1 Electronic Properties 483
15.4.2 Metal–Support Interactions 484
15.4.2.1 Particle Morphology 484
15.4.2.2 Influence of the Oxide Support on the Electronic Properties of Gold Particles 485
15.4.2.3 Influence of the Gold Particles on the Oxide Support Properties 486
15.4.3 CO and O$_2$ Chemisorption 486
15.5 Overview of the Mechanisms of Carbon Monoxide Oxidation 487
15.5.1 Mechanisms Involving the Oxide Support 487
15.5.1.1 Haruta’s Mechanism: Metal Gold Particles 487
15.5.1.2 Bond and Thompson’s Mechanism: Unreduced Gold at the Interface 488
15.5.2 Mechanisms Involving “Gold Particles Only” 489
15.5.2.1 Goodman’s Mechanism 489
15.5.2.2 Kung’s Mechanism 490
15.5.3 Cationic Gold for CO Oxidation 490
15.6 Contribution of Quantum Chemical Calculation and Surface Science to the Understanding of CO Oxidation 491
15.6.1 Gold Supported on MgO or on Non-reducible Supports 491
15.6.2 Gold Supported on TiO$_2$ or on Reducible Supports 493
15.6.3 Influence of Water on the Adsorption of O₂ on Gold Clusters 494
15.6.4 How to go Further in Understanding the Mechanism(s) of CO Oxidation Thanks to Model Catalysts 495
15.7 Concluding Remarks: Attempt to Rationalise the Results on CO Oxidation 497

16 NO Heterogeneous Catalysis Viewed from the Angle of Nanoparticles 505
Frédéric Thibault-Starzyk, Marco Daturi, Philippe Bazin, and Olivier Marie

16.1 Introduction 505
16.2 The Chemistry of deNOx Catalysis 507
16.3 The Metal Center 509
16.3.1 Size of Nanoparticles 509
16.3.2 Morphology of Metal Particles 510
16.4 Metals in Zeolites 510
16.4.1 Cerium for Controlling Metal Particle Size 511
16.4.2 Formation of Specific Metal Complexes in Nanometric Zeolite Pores 512
16.4.3 Influence of the Zeolite Si/Al Ratio and Pore Structure 513
16.4.4 Non-thermal Assisted Plasma Reaction 513
16.5 Three-way Catalysis 514
16.5.1 General Points 514
16.5.2 The Metallic Phase 515
16.5.3 The Role of Ceria 517
16.5.3.1 Particle Size, Stability 517
16.5.3.2 Role of ZrO₂ Additive: the Ceria–Zirconia Solid Solution 518
16.5.3.3 Metal–Support Interaction 521
16.6 New Nanocatalytic Materials 523
16.6.1 Nano-GAZ 523
16.6.2 Nanotubes 524
16.7 Conclusion 525

17 Hydrocarbon Catalytic Reactivity of Supported Nanometallic Particles 529
François Garin and Pierre Légaré

17.1 Catalytic Alkane Reforming on Nanometallic Particles 529
17.1.1 Introduction 529
17.1.2 Influence of the Mean Metallic Particle Sizes in Catalytic Reactions 530
17.1.3 Reaction Intermediates 535
17.1.4 Influence of the Gas Atmosphere Around the Nanoparticles 538
17.1.5 Reaction Intermediates Determined from Kinetic Data 538
17.1.5.1 Kinetic Models 538
17.1.5.2 Intermediate Species 541
17.1.6 Gold Nanoparticles 541
17.2 Electronic Structure of Metal Nanoparticles 542
17.3 General Discussion 548

18 Surface Organometallic Chemistry on Metal: Synthesis, Characterization and Application in Catalysis 553
Katrin Pelzer, Jean-Pierre Candy, Gregory Godard, and Jean-Marie Basset
18.1 Introduction 553
18.2 Supported Bimetallic Nanoparticles 557
18.2.1 Supports 557
18.2.1.1 Methodology and Tools 557
18.2.1.2 Characterisation of Metallic Surfaces and Metal Nanoparticles 561
18.2.2 Supported Host Metal 562
18.2.2.1 Host Metal Deposition on the Supports 562
18.2.2.2 Characterization of the Host Monometallic Catalysts 562
18.2.3 Reaction of Group XIV Organometallic Compounds with “Host” Metals 564
18.2.3.1 General Considerations 564
18.2.3.2 Reaction of SnBu₄ under Hydrogen in Solution 566
18.2.3.2.1 General Considerations 566
18.2.3.3 Reaction of SnBu₄ under Hydrogen in the Absence of a Solvent: Characterization of the Bimetallic Catalysts 569
18.2.4 Reactivity of Arsenic and Mercury Organometallic Compounds with “Nanoparticles” of Nickel Covered with Hydrogen 574
18.2.4.1 Triphenylarsine 575
18.2.4.2 Diphenylmercury 576
18.3 Unsupported Bimetallic Particles 577
18.3.1 Introduction 577
18.3.2 Synthesis of Unsupported Nanoparticles 578
18.3.3 Stabilization of Unsupported Nanoparticles 579
18.3.4 Preparation and Characterization of Ru Nanoparticles Stabilized by Hexadecylamine 581
18.3.5 Preparation and Characterization of Ru Nanoparticles Stabilized by Grafted Organometallic Fragments 585
18.3.6 Preparation and Characterization of Pt Nanoparticles Stabilized by Grafted Organosilyl Fragments 587
18.4 Some Applications of Supported Nanoparticles Modified by Organometalics 590
18.4.1 Introduction 590
18.4.2 Group a: Evidence for a Selective Effect in Catalysis of the Grafted “Organometallic Ligand” 592
18.4.2.1 Competitive Hydrogenation of Hex-2-en-1-ol and Hex-5-en-1-ol Unsaturated Alcohols 592
18.4.2.2 Hydrogenation of α,β-Unsaturated Aldehydes 593
18.4.3 Group b: the Role of “Adatoms” in Selectivity 596
18.4.3.1 Isomerization of 3-Carene into 2-Carene 596
18.4.3.2 Dehydrogenation of Butan-2-ol to Methyl Ethyl Ketone 596
18.4.3.3 Selective Hydrogenation of Acetophenone to Phenyl Ethanol 597
18.4.4 Group c: “Site Isolation” Phenomenon 597
18.4.4.1 Dehydrogenation of Isobutane to Isobutene 598
18.4.4.2 Selective Hydrogenolysis of Esters and Acids to Aldehydes and Alcohols 599
18.5 Application of Surface Organometallic Chemistry on Metals to the Removal of “Heavy” Metal from Contaminated Feeds 603
18.5.1 Application in “Heavy” Metal Elimination from Crude Oil 603
18.5.1.1 Introduction 603
18.5.1.2 Natural Gas Condensates as Steam-cracker Feedstocks 604
18.5.1.3 Mercury Removal Methods 605
18.5.1.4 Typical RAM II (Removal of Arsenic and Mercury) Process Description 605
18.5.1.5 Chemical Reactions 606
18.5.1.6 Conclusion 608
18.5.2 Application in “Heavy” Metal Ion Removal from Aqueous Effluents 608
18.5.2.1 Cd$^{2+}$ Removal 608
18.5.2.2 Ni$^{2+}$ and Co$^{2+}$ Removal 611
18.5.2.3 Cr$^{6+}$ Removal 613
18.6 Conclusion 613

Index 621