The next generation of WileyPLUS gives you the freedom and flexibility to tailor curated content and easily manage your course in order to keep students engaged and on track.

When course materials are presented in an organized way, students are more likely to stay focused, develop mastery, and participate in class. WileyPLUS Next Gen gives students a clear path through the course material.

Starting with Wiley’s quality curated content, you can customize your course by hiding or rearranging learning objectives, setting the pacing of content, and even integrating videos, files, or links to relevant material. The easy-to-use, intuitive interface saves you time getting started, managing day-to-day class activities, and helping individual students stay on track.

Customized Content
Using the content editor, you can add videos, documents, pages, or relevant links to keep students motivated.

Interactive eTextbook
Students can easily search content, highlight and take notes, access instructor’s notes and highlights, and read offline.

Drag-and-Drop Customization
Quick reordering of learning objectives and modules lets you match content to your needs.

Linear Design and Organization
Customizable modules organized by learning objective include eTextbook content, videos, animations, interactives, and practice questions.

Calendar
The drag-and-drop calendar syncs with other features in WileyPLUS—like assignments, syllabus, and grades—so that one change on the calendar shows up in all places.

Instructor App
You can modify due dates, monitor assignment submissions, change grades, and communicate with your students all from your phone.

Wileyplus.com/nextgen
VISUALIZING MICROBIOLOGY: A HEALTHY PERSPECTIVE

Rodney Anderson, Ph.D.
Ohio Northern University

Linda Young, Ph.D.
Ohio Northern University
Why Visualizing Microbiology?

Microbiology is a fascinating discipline. Not only do microorganisms affect every aspect of health, they also play a foundational role in every ecosystem on Earth. Whether a student is learning microbiology to become a medical care provider working to improve patient health, a businessperson manufacturing healthy food products, or an environmental scientist striving to maintain a healthy planet, understanding the role of microorganisms is critical.

Visualizing Microbiology is intended to meet the unique needs of students taking their first course in general microbiology. Its emphasis on the relationship of microorganisms to health makes it of particular interest to courses that primarily serve students planning for a career in the allied health sciences. Visualizing Microbiology will cultivate in the reader an appreciation for the complexity, scope, and dynamic nature of the science of microbiology.

The pedagogy and organization of Visualizing Microbiology is based on decades of research into the effective use of visuals in learning. The animations, videos, figures, and photos are designed to explain, present, and organize new information in a way that promotes greater retention and stimulates critical thinking. This is especially important in a course about microorganisms, which are too small to see and for which students have no context. All visuals are tightly integrated with accompanying text to create a highly engaging learning experience that encourages students to develop rich mental images of the microbial world.

Visualizing Microbiology seeks to optimize learning outcomes with distinctive features that inspire students to step beyond basic memorization to attain a mastery that helps them visualize how such small organisms can have such a great influence on health and the environment. Our integration of engaging images, straightforward text, and emphasis on practical applications helps students understand the vast diversity of microorganisms and then learn how they will apply these concepts when they become practicing professionals. Real-life Case Studies are told as engaging stories that enhance understanding and application of concepts in a clinical context. The Microbiologist’s Toolbox highlights key laboratory diagnostic techniques, What a Microbiologist Sees puts microorganisms into an everyday perspective (see photo and graph), and Clinical Applications introduces the latest research into microbiology applications in health care. Every chapter is rich with critical thinking opportunities, as students are prompted to answer questions along with each visual. All of these features facilitate student engagement and are especially useful to those planning careers as medical professionals.

Section 10.2 highlights the first-line defenses of your immune system, including fever. Because students typically see fever as a medical problem, the What a Microbiologist Sees feature clearly connects increasing body temperature with declining pathogen growth. Additionally, the required data analysis in this feature provides students with a guided opportunity to practice their critical thinking skills.

![Correlation of oral body temperature in adults and bacterial growth rate](image)
Teaching and Learning Environment:

WileyPLUS Learning Space

What is WileyPLUS Learning Space? It’s a place where students can learn, collaborate, and grow. Through a personalized experience, students create their own study guide while they interact with course content and work on learning activities.

WileyPLUS Learning Space combines adaptive learning functionality with a dynamic new e-textbook for your course—giving you tools to quickly organize learning activities, manage student collaboration, and customize your course so that you have full control over content as well as the amount of interactivity between students.

Instructors can:

- Assign activities and add your own materials
- Guide students through what’s important in the e-textbook by easily assigning specific content
- Set up and monitor collaborative learning groups
- Assess student engagement
- Benefit from a sophisticated set of reporting and diagnostic tools that give greater insight into class activity

Learn more at www.wileypluslearningspace.com. If you have questions, please contact your Wiley representative.

What do students receive with WileyPLUS Learning Space?

- A digital version of the complete textbook with integrated media and quizzes.
- The ORION personalized practice adaptive learning module that maximizes study time.
- Interactive Case Studies are available in every chapter to augment critical thinking. Students are presented with a patient experiencing a collection of symptoms and then embark on a diagnostic process through a series of decisions to confirm the responsible pathogen and course of treatment.
- Chapter Opening Videos draw in the student and highlight why the upcoming chapter material is relevant to their course of study and future careers. The subjects of the videos – nursing professors, nursing students, recent graduates, and practicing nurses and health care providers – briefly introduce the chapter content and provide context and relevance for why the material presented is important, with a personal touch.

In the text, a feature box called The Microbiologist’s Toolbox puts additional clinical focus on diagnostic tools and laboratory techniques. An online video accompanies this feature in every chapter. The video introduces students to important and relevant laboratory techniques.

- NCLEX Practice Exams offer 30 multiple-choice questions that allow students to prepare for the NCLEX exam in relation to the chapter content.
- Glossary and Flashcards include key term flashcards with definitions for self-study as well as multiple-choice quizzes.
- Web Resources offer links to additional online resources for further research and discovery.

What do instructors receive with WileyPLUS Learning Space?

Pre-created teaching materials and assessments help instructors optimize their time:

- Every chapter contains a Lecture PowerPoint Presentation, prepared by Lara Kingeter, Tarrant County College, with a combination of key concepts, figures and tables, and examples from the textbook.
- The Test Bank, prepared by Jacqueline Spencer, Thomas Nelson Community College, is available in a Word document format or through Respondus. The questions are available to instructors to create and print multiple versions of the same test by scrambling the order of all questions found in the Word version of the test bank. This allows users to customize exams to fit their unique classroom by altering or adding new problems. The test bank has over 100 multiple choice, true-false, text entry, and essay questions per chapter. Each question has been linked to a specific, student learning outcome, and the correct answer provided with section references to its source in the text.

Gradebook: WileyPLUS provides instant access to reports on trends in class performance, student use of course materials, and progress toward learning objectives.
Reviewers of Visualizing Microbiology

Reviewers
Cindy Anderson; Mt. San Antonio College
Lisa Anderson; California State University – San Bernardino
Lois Anderson, Minnesota State University – Mankato
Michael Angell; Eastern Michigan University
Aaron Baxter; Grand Valley State University
Barbara Beck; Rochester Community and Technical College
Jennifer Bess; Hillsborough Community College
Emily Booms; Northeastern Illinois University
James Bretz; Montgomery County Community College
Linda Bruslind; Oregon State University
Bradley Christian; McClennan Community College
Georgia Christian; Horry-Georgetown Technical College
Frank Cruz; Georgia State University
Jessica DeGraff; Gloucester County College
Jessica DiGirolamo; Broward College
Jason Furrer; University of Missouri
Kathy Germain; Southwest Tennessee Community College
Julianne Grose; Brigham Young University – Provo
Wendy Hadley; Allan Hancock College
Steven Hecht; Grand Valley State University
Dale Horeth; Tidewater Community College
Julie Huggins; Arkansas State University
Syana Jahangiri; Folom Lake College
Seema Jejurikar; Bellevue College
Margaret Kincaid; University of Missouri – Kansas City
Ruhul Kuddus; Utah Valley University
Gitanjali Kundu; Brookdale Community College
Rachael Leonard; Community College of Allegheny County
Terri Lindsey; Tarrant County College
Suzanne Long; Monroe Community College
Sergei Markov; Austin Peay State University
John McKillip; Ball State University
Kristen Mitchell; Boise State University
Catherine Murphy; Ocean County College
Marcia Pierce; Eastern Kentucky University
Pamela Rich; University of Akron
Brenden Rickards; Rowan College – Gloucester City
Meredith Rodgers; Wright State University
David Rollins; Prince Georges Community College
Samuel Schwarlose; Amarillo College
Heather Seitz; Johnston County Community College
Jack Shurley; Idaho State University
Lori Smith; American River College
Sherry Steward; Navarro College
Wendy Trzyna; Marshall University
John Whitlock; Hillsborough Community College
Patty Wilber; Central New Mexico Community College
Michael Witty; Florida Southwestern State Community College
Kelly Worden; Red Rocks Community College
Floyd Wormley: The University of Texas at San Antonio
Mark Zelman; Aurora University

Class Testers
Carroll Bottoms; Collin College
Michael Buoni; Delaware Technical Community College
Seema Endley; Collin College
Gina Holland; Sacramento Technical College
Jeba Inbarasu; Metropolitan Community College
Dianne Jedicka; Columbia College
Malda Kocache; George Mason University
Marcia Pierce; Eastern Kentucky University
Louisa Schmid; Tyler Junior College
Jack Shurley; Idaho State University
Lori Smith; American River College
Meredith Rodgers; Wright State University
Jacqueline Spencer; Thomas Nelson Community College
Marcia Watkins; Eastern Kentucky University

Contributors
Donna Balding; Middle Georgia State University
Evelyn Biluk, Chippewa Valley Technical College
Cliff Boucher; Tyler Junior College
Michael Buoni; Delaware Technical Community College
Daniel Combs; Ohio Northern University
Jessica DiGirolamo; Broward College
Kami Fox; Ohio Northern University
Megan D. Gamble; University of South Carolina
Julianne Grose; Brigham Young University – Provo
Lara Kingeter; Tarrant Community College
Andrea Rediske; University of Central Florida
Jacqueline Spencer; Thomas Nelson Community College
Lisa Walden; Ohio Northern University
Curtis Young; The Ohio State University
Special Thanks

We would like to thank the kindness and patience of our spouses and family members whose support made this book possible. Words are insufficient to express how grateful we are for their constant encouragement and ongoing understanding. A project of this scope required many more hours away from them than we ever imagined. During this time, they picked up the slack at home without complaint so we had more time to write. Their willingness to help us see this project through was inspiring and provided us with the perseverance and drive needed to write Visualizing Microbiology. Thank you all so very much.

Dr. Young extends special thanks to Ken Blanchard (Executive Director of the NW Ohio Literacy Council) and Laura Ball (ABLE/GED Coordinator of Lima City Schools) for providing her with office space at the Lima Adult Learning Center during her sabbatical. She is not only grateful for the energized environment in which to write, but also for the lasting friendships she developed with these dedicated educators.

Additionally, she would like to acknowledge Kristina M. Edington, BSMT, MT(ASCP), who served as the Director of the Microbiology Unit of the New Vision Medical Laboratory during Dr. Young's professional retraining. She is very grateful to Kris and her industrious, knowledgeable staff of clinical microbiologists for their professional input and strong support of allied health education. Their contributions were invaluable to the development of the clinical components of this text.

We also appreciate the expertise provided by our ONU colleagues who developed the various video vignettes. Dr. Kami Fox (DNP, CNP Pediatric Nurse Practitioner, Associate Professor, Director and Chair of Nursing) was responsible for crafting the chapter opener videos. Professor Lisa Walden (MEd, MLS(ASCP)CM, Director of the West Central Ohio Medical Laboratory Science Program at Ohio Northern University) created the toolbox videos, demonstrated the clinical techniques, and provided cultures and media for photos. The directing, filming, and editing of the Visualizing videos were skillfully performed by Daniel Combs (BA Broadcast Communications; Multimedia Specialist and Social Media Manager). Thank you all for your contributions to this important component of Visualizing Microbiology.

The help and expertise provided by the team at Wiley & Sons, Inc. has been invaluable. For their on-going encouragement, tremendous patience, attention to detail, and creative input, we would like to extend our special thanks to: Deena Cloud (Line Editing), Lauren Elfers (Associate Product Designer), Ryan Flahive (Executive Editor), Rebecca Heider (Text and Illustration Developer), Kathy Naylor (Art Development), Nancy Perry (Manager, Product Development Global Education), Mary Ann Price (Senior Photo Editor), Sherrill Redd (Aptara Project Manager), Bonnie Roth (Senior Editor, Biology Global Education), Clay Stone (Executive Marketing Manager), and Kevin Witt (Acquisitions Editor). Additionally, we are very grateful to our many content reviewers, as their valuable suggestions have significantly enhanced this text, and to our classroom reviewers for providing practical feedback maximizing the effective use Visualizing Microbiology with undergraduates.
About the Authors

Rodney P. Anderson

Rodney P. Anderson received his Ph.D. in Biological Sciences from the University of Iowa in 1989. His doctoral work centered on protein synthesis mechanisms in *E. coli*. After graduate school, he began his academic career at Ohio Northern University where he continues to teach and conduct research with undergraduates in the Department of Biological and Allied Health Sciences. He teaches microbiology for majors and allied health students as well as courses in general biology, genetics, and epidemiology.

Dr. Anderson has been actively involved in microbiology education. He has been a past President of ASM’s Conference on Undergraduate Education, which developed the core curriculum for undergraduate microbiology courses, and has organized and spoken at a number of education division symposia at ASM’s General Meeting. Outreach activities have included Microbial Discovery Workshops for High School science instructors and doing discovery science activities at local elementary schools. He is an author of two books published by ASM press: *Outbreak* and *The Invisible ABCs*.

Linda M. Young

Linda M. Young earned her Ph.D. in Botany at The Ohio State University in 1988. Her research focusing on signal transduction in root gravitropism was supported by NASA. She continued these studies with undergraduate assistance when she joined the faculty of Ohio Northern University, a student-centered institution that emphasizes effective instruction as a faculty member’s principal responsibility. She enjoys teaching both freshman and advanced-level biology courses. Dr. Young served 7 years as the Assistant Dean of the Getty College of Arts and Sciences, which allowed her the opportunity to implement several programs to assist students in academic difficulty, ease freshman transition into college, and support the endeavors of high-achieving students.

Although initially educated as a plant/cell physiologist, changing departmental needs led to her retraining. Consequently, Dr. Young now also teaches Microbiology for Allied Health Sciences (nursing) and Introduction to Microbiology (majors). Her research has also changed and now targets infection control issues and the ethnobotanical basis of antibiosis. Drs. Young and Anderson have previously coauthored *Case Studies in Microbiology: A Personal Approach* published by John Wiley & Sons, Inc. She has also coauthored the laboratory manual used for general botany at ONU.
Brief Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>1</td>
<td>Microbial World</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>The Biochemistry of Macromolecules</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Microscopy</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Prokaryotic Organisms</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>Eukaryotic Organisms</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>Viruses and Other Infectious Particles</td>
<td>146</td>
</tr>
<tr>
<td>7</td>
<td>Metabolism</td>
<td>178</td>
</tr>
<tr>
<td>8</td>
<td>Microbial Genetics and Genetic Engineering</td>
<td>210</td>
</tr>
<tr>
<td>9</td>
<td>Microbial Growth and Control</td>
<td>242</td>
</tr>
<tr>
<td>10</td>
<td>Innate Immunity</td>
<td>274</td>
</tr>
<tr>
<td>11</td>
<td>Adaptive Immunity</td>
<td>304</td>
</tr>
<tr>
<td>12</td>
<td>Vaccination, Immunoassays, and Immune Disorders</td>
<td>334</td>
</tr>
<tr>
<td>13</td>
<td>Microbial Pathogenesis</td>
<td>366</td>
</tr>
<tr>
<td>14</td>
<td>Antimicrobial Agents</td>
<td>398</td>
</tr>
<tr>
<td>15</td>
<td>Epidemiology and Infection Control</td>
<td>434</td>
</tr>
<tr>
<td>16</td>
<td>Diseases of the Respiratory System</td>
<td>462</td>
</tr>
<tr>
<td>17</td>
<td>Diseases of the Skin and Eyes</td>
<td>496</td>
</tr>
<tr>
<td>18</td>
<td>Diseases of the Nervous System</td>
<td>532</td>
</tr>
<tr>
<td>19</td>
<td>Diseases of the Cardiovascular and Lymphatic Systems</td>
<td>562</td>
</tr>
<tr>
<td>20</td>
<td>Diseases of the Gastrointestinal System</td>
<td>598</td>
</tr>
<tr>
<td>21</td>
<td>Diseases of the Urogenital System</td>
<td>632</td>
</tr>
<tr>
<td>22</td>
<td>Environmental and Industrial Microbiology</td>
<td>670</td>
</tr>
<tr>
<td>Appendix</td>
<td>A: Answers to Self-Tests</td>
<td>702</td>
</tr>
<tr>
<td></td>
<td>B: Physiological Reference Ranges</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>708</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>726</td>
</tr>
</tbody>
</table>
1 Microbial World

1.1 The Microbes
- A Brief Survey of the Microbial World 4
- The Dominant Form of Life on Earth 5

1.2 The Conflicts
- Growth and Control of Microbes 8
- The Role of the Immune System 10
 - What a Microbiologist Sees: Wrestling and the Spread of Skin Pathogens 10
- Pathogenesis 11
- Antimicrobial Drugs 12

1.3 Infectious Disease
- Epidemiology and Healthy Practices 13
- Host Defenses and Microbial Pathogenesis Strategies 14
 - The Microbiologist’s Toolbox: MALDI TOF Mass Spectrometry 15
- Infectious Disease Statistics 16
 - Case Study: Vaccination: A Casualty of War 17

1.4 Microbial Ecology and Commercial Applications
- The Importance of Environmental Microbes 18
- The Industrial Use of Microorganisms 19
 - Clinical Application: Pasteurization 20

2 The Biochemistry of Macromolecules

2.1 Proteins
- The Four Levels of Protein Structure 28
- Protein Diversity and Function 34
 - What a Microbiologist Sees: The Effect of Modified Tertiary Binding on Protein Structure 34

2.2 Enzymes
- Enzyme Action 35
- Factors Influencing the Rate of Enzyme Activity 37

2.3 Carbohydrates
- Simple and Complex Carbohydrates 41
- The Functional Diversity of Carbohydrates 41
 - Clinical Application: Rapid Glycogen Breakdown in a Diabetic Patient in Shock 42

2.4 Lipids
- The Structural Classes of Lipids 43
 - Case Study: Acne—A Bacterial Interaction with Skin Oils 44
- Lipid Functions 47
 - The Microbiologist’s Toolbox: Ziehl-Neelsen Acid-Fast Staining of Mycolic Acid Cell Walls 48

2.5 Nucleic Acids
- The Structures of DNA and RNA 49
- Nucleic Acid Functions 52
5 Eukaryotic Organisms 112

5.1 The Eukaryotic Cell 114
• Cell Size 114
• The Eukaryotic Organelles 114

5.2 The Origins of Eukaryotic Organelles and Organisms 120
• The Autogenous and Endosymbiotic Hypotheses 120
• Eukarya: A Classification Overview 120

5.3 The Algae 122
• General Characteristics and Unique Features 122
• A Survey of Algae 122
 ▶ Clinical Application: Agar—The Ideal Solid Medium for Bacterial Culture 124
• Pathogenic Algae 124

5.4 The Protozoans 125
• General Characteristics and Unique Features 125
• A Survey of Protozoans 126
• Pathogenic Protozoans 128

5.5 The Fungi 129
• General Characteristics and Unique Features 129
 ▶ The Microbiologist’s Toolbox: The Growth of Fungal Specimens on Sabouraud Dextrose Agar 131
• A Survey of Fungi 131
• Pathogenic Fungi 133
 ▶ What a Microbiologist Sees: The Morphological Plasticity of Candida 134

5.6 The Helminths 135
• General Characteristics and Unique Features 135
• A Survey of Helminths 135
• Pathogenic Helminths 135
 ▶ Case Study: Cravings 138

5.7 The Arthropods 139
• A Survey of Arthropods 139
• Pathogenic Arthropods and Arthropod Vectors 139
6 Viruses and Other Infectious Particles

6.1 Viral Structure and Classification
- The Structure of Viruses
- The Classification of Viruses

6.2 Viral Replication Cycles
- Viruses Replicating in Animal Cells
- The Microbiologist’s Toolbox: Presumptive Diagnosis of a Viral Infection Using CPE Analysis
- Viruses Replicating in Bacterial Cells

6.3 Viruses and Human Health
- The Clinical Cultivation of Viruses
- The Impact of Viral Infections
- Case Study: H1N1 in Young Adults
- Viruses, Recurrent Infections, and Cancer
- What a Microbiologist Sees: Connecting Symptoms with the Progression of HIV

6.4 Prevention and Treatment of Viral Infections
- The Prevention of Viral Infections
- Clinical Application: Mandatory Flu Vaccines for Health Care Providers
- Antiviral Therapies
- Viral Influences on Bacterial Infections

6.5 Viruslike Microbes
- Viroids
- Satellites
- Prions

7 Metabolism

7.1 The Role of Energy in Life
- Basic Energy Principles
- Energy and Chemical Reactions
- The Microbiologist’s Toolbox: Identifying Bacteria by Metabolic Differences

7.2 Energy Production Principles
- Oxidation-Reduction Reactions
- ATP

7.3 Glycolysis and Fermentation
- Glycolysis
- Fermentation

7.4 Aerobic Cellular Respiration
- Pyruvate Oxidation and the Citric Acid Cycle
- The Electron Transport System
- Lipid and Protein Catabolism
- What a Microbiologist Sees: The Deepwater Horizon Oil Spill–Microbial Bioremediation
- Integrated Metabolic Pathways

7.5 Photosynthesis
- Reactions of Photosynthesis
- Case Study: A Metabolic Imbalance in Grand Lake St. Mary’s
- Chemosynthesis in Bacteria
Microbial Genetics and Genetic Engineering

8.1 DNA as the Genetic Material
- DNA Structure and Functions 212
- DNA Replication in Bacteria 214

8.2 From DNA to Protein
- Transcription 215
- Translation 217

8.3 Sources of Genetic Variation
- Mutation 219
- Recombination 222
- Transposition 224
- Case Study: The Spread of a Drug-resistance Gene 224

8.4 Regulation of Gene Expression
- Transcriptional Control 225
- Pre- and Posttranscriptional Control 226

8.5 Recombinant DNA Technology
- Recombinant DNA Tools and Gene Cloning 228
- The Microbiologist’s Toolbox: Gel Electrophoresis 229
- Applications of Recombinant DNA Technology 230
- What a Microbiologist Sees: Manipulating the Bacterial Genome for Agricultural Benefits 232
- Ethical and Safety Concerns 233

8.6 Genomics
- DNA Sequencing 234
- Genomic Analysis 234
- Applications of Genomics 236
- Clinical Application: Screening for Genetic Diseases—BRCA1 Mutation 236

Microbial Growth and Control

9.1 Requirements for Microbial Growth
- Energy Sources 244
- Physical Requirements 244
- Case Study: Foodborne Illness from Home-Prepared Fermented Tofu 245
- Chemical Requirements 247

9.2 Bacterial Reproduction and Growth
- Cell Division 249
- Growth Rate of Bacteria 250
- Phases of Growth 251
- Methods of Quantifying Bacterial Growth 252
- The Microbiologist’s Toolbox: Dilution Plating 253
13 Microbial Pathogenesis

13.1 Entering and Adhering to the Host
- Microbial Reservoirs
- Portals of Entry and Exit
- Adhering to Host Cells

13.2 Transmission of Microbes
- Modes of Transmission
 - Case Study: The Cholera Epidemic in Goma, Zaire
- Horizontal and Vertical Transmission

13.3 Bypassing Host Defenses
- Evading Immune Attack
- Altering Pathogen Antigens
- Damaging the Host Immune System

13.4 Damaging Host Tissues
- Direct Damage
- Enzymes
- Endotoxins
- Exotoxins
 - Clinical Application: Toxoid-based Vaccines
 - Immunopathy
 - The Microbiologist’s Toolbox: Analysis of Hemolysis on Blood Agar

13.5 Factors Influencing Disease Outcomes
- Host Factors
 - What a Microbiologist Sees: Stress and Infection
- Microbial Factors

14 Antimicrobial Agents

14.1 Principles of Antimicrobial Chemotherapy
- The Discovery and Development of Antimicrobial Agents
- Choosing the Best Antimicrobial Agent
- The Microbiologist’s Toolbox: The Broth Dilution Test

14.2 Antibacterial Agents
- Inhibitors of Cell Wall Synthesis
- Inhibitors of Protein Synthesis
- Inhibitors of Nucleic Acid Synthesis
- Agents That Target the Bacterial Plasma Membrane
- Antimycobacterial Agents
 - Clinical Application: The Fight Against Drug-Resistant Tuberculosis

14.3 Antiviral Agents
- Inhibitors of Virus Entry
- Inhibitors of Viral Nucleic Acid Synthesis
- Inhibitors of Viral Protein Synthesis
- Inhibitors of Viral Assembly and Release

14.4 Antifungal and Antiparasitic Agents
- Antifungal Agents
- Antiparasitic Agents
 - Case Study: Problems with Malaria Medication in Mozambique

14.5 Antimicrobial Drug Resistance
- Principles of Drug Resistance
- Mechanisms of Drug Resistance
- Human Factors Contributing to Antimicrobial Resistance
 - What a Microbiologist Sees: Livestock-Associated Drug-Resistant S. aureus
15 Epidemiology and Infection Control 434

15.1 Epidemiology and Public Health 436
• Early Epidemiological Successes 436
• Significant Accomplishments of Epidemiology 436

15.2 Epidemiological Surveillance 438
• Prevalence, Incidence Rates, and Mortality Rates 438
■ What a Microbiologist Sees: Antibiotic-impregnated Bone Cement 439
• Epidemic Curves 441
• Disease Surveillance 441

15.3 Epidemiological Studies and Clinical Trials 442
• Case-Control and Cohort Studies 442
• Clinical Trials 443
■ Case Study: A Foodborne Outbreak Among Inmates at a County Jail 444

15.4 Health Care–associated Infections 446
• Common Health Care-Associated Infections 446
■ Clinical Application: Reducing the Risk of Bloodstream Infections 447
• Surgical Site Infections 447
• CAUTIs 450
• PICC Line Infections 450
• CLABSIs 451

15.5 Preventing Pathogen Spread in Health Care Settings 451
• Hand Hygiene 451
• Universal and Standard Precautions and PPE 453
• Screening 454
■ The Microbiologist’s Toolbox: MRSA Screening Procedures in the Clinical Laboratory 455
• Isolation Procedures 456

16 Diseases of the Respiratory System 462

16.1 The Conflicts 464
• Host Defenses 464
• Microbial Pathogenic Strategies 464
• Normal Microbiota 465
16.2 Bacterial Diseases of the Respiratory System
- Diphtheria
- Pertussis
- Tuberculosis
- Case Study: Whooping Cough Outbreak

16.3 Viral Diseases of the Respiratory System
- The Common Cold
- Influenza
- What a Microbiologist Sees: Unpredictable Behavior

16.4 Diseases of the Respiratory System Caused by Multiple Pathogens
- Sinusitis and Otitis Media
- Pharyngitis
- The Microbiologist’s Toolbox: Diagnosis of Strep Throat
- Laryngitis, Croup, Tracheitis, and Epiglottitis
- Bronchitis and Bronchiolitis

16.5 Pneumonia
- Clinical Application: Sputum Samples
- General Characteristics of Pneumonia
- Epidemiology of Pneumonia
- Causes of Pneumonia
- Emerging Pathogens

17 Diseases of the Skin and Eyes

17.1 The Conflicts
- Host Defenses
- Microbial Pathogenic Strategies
- Normal Microbiota

17.2 Bacterial Diseases of the Skin
- Staphylococcal and Streptococcal Skin Diseases
- Pseudomonal Skin Diseases
- Miscellaneous Bacterial Skin Diseases

17.3 Viral Diseases of the Skin
- Pediatric Viral Rashes
- Clinical Application: Improving Hand-Hygiene Compliance with Technology
- Shingles
- Warts
- Smallpox

17.4 Fungal, Protozoan, and Arthropod Diseases of the Skin
- Fungal Skin Diseases
- What a Microbiologist Sees: Oral Thrush and Immune System Status
- Protozoan Skin Diseases
- Arthropod Skin Diseases
- Case Study: Kindergarten Contact

17.5 Diseases of the Eye
- Host Defenses and Microbial Pathogenic Strategies
- Conjunctivitis
- Other Eye Diseases
18 Diseases of the Nervous System 532

18.1 The Conflicts 534
- Host Defenses 534
- Microbial Pathogenic Strategies 534

18.2 Bacterial Diseases of the Nervous System 536
- Bacterial Meningitis 536
- Tetanus 540
- Botulism 540
- Clinical Application: Clinical Use of Botulism Toxin 541
- Hansen’s Disease (Leprosy) 543

18.3 Viral Diseases of the Nervous System 543
- Viral Meningitis 543
- Case Study: Viral Meningitis in a High School Student 544
- Encephalitis 545
- Polio 547
- What a Microbiologist Sees: Polio Eradication 547
- Rabies 548
- Other Viral Diseases of the Nervous System 550

18.4 Fungal and Protozoan Diseases of the Nervous System 551
- Fungal Meningitis 551

18.5 Prion Diseases of the Nervous System 554
- Animal Spongiform Encephalopathies 554
- Human Prion Diseases 554

19 Diseases of the Cardiovascular and Lymphatic Systems 562

19.1 The Conflicts 564
- Host Defenses 564
- Microbial Pathogenic Strategies 564

19.2 Sepsis and Cardiac Diseases 566
- Sepsis 566
- Cardiac Diseases 569
- The Microbiologist’s Toolbox: The Blood Culture 571

19.3 Bacterial Diseases of the Cardiovascular and Lymphatic Systems 572
- Brucellosis 572
- Anthrax 574
- Lyme Disease 575
- Plague 577
- Other Bacterial Diseases 580
19.4 Viral Diseases of the Cardiovascular and Lymphatic Systems
- Leukocyte-associated Cardiovascular and Lymphatic Diseases 581
- What a Microbiologist Sees: The Diagnosis of Mononucleosis 582
- Viral Hemorrhagic Diseases 583
- Hepatitis 585
- Clinical Application: HIV Status and the Spread of Hepatitis 586

19.5 Protozoan and Helminthic Diseases of the Cardiovascular and Lymphatic Systems
- Systemic Protozoan Diseases 587
- Case Study: The Kissing Bug 588
- Systemic Helminthic Diseases 590

20.3 Bacterial Diseases of the Lower GI Tract
- Diseases Caused by *Salmonella* 607
- Diarrheagenic *E. coli* Infections 608
- Campylobacteriosis 608
- Shigellosis 608
- The Microbiologist’s Toolbox: Preparing and Analyzing a Fecal Culture 609
- Cholera 610
- Opportunistic Diseases 612

20.4 Viral Diseases of the GI System
- Cold Sores 614
- Mumps 614
- Viral Gastroenteritis 615
- Case Study: A Norovirus Outbreak Among Nurses 616
- Hepatitis A and Hepatitis E 617

20.5 Protozoan Diseases of the GI System
- Giardiasis 618
- Amoebic Dysentery 618
- Cryptosporidiosis 619

20.6 Helminthic Diseases of the GI System
- Trematode Infections 620
- Cestode Infections 621
- Nematode Infections 622
21 Diseases of the Urogenital System

21.1 The Conflicts 634
- Host Defenses 634
- Microbial Pathogenic Strategies 634
- Normal Microbiota 636

21.2 Bacterial Diseases of the Urinary System 637
- Cystitis 637
- What a Microbiologist Sees: Cranberry Juice for UTI Prevention 639
- Pyelonephritis 640
- Case Study: Pyelonephritis in a Toddler 641
- Leptospirosis 641

21.3 Bacterial Diseases of the Reproductive Systems 643
- Prostatitis 643
- Chlamydia 643
- Gonorrhea 645
- The Microbiologist’s Toolbox: The Challenge of Culturing Neisseria gonorrhoeae 646
- Pelvic Inflammatory Disease 646
- Syphilis 648

21.4 Viral Diseases of the Reproductive Systems 650
- Genital Warts 650
- Clinical Application: Winning the War on Cervical Cancer 652
- Genital Herpes 652
- Molluscum Contagiosum 653

21.5 HIV and AIDS 654
- An Emerging Infection 655
- HIV Replication and Pathogenicity 657
- HIV Diagnosis, Treatment, and Outlook 658

21.6 Fungal and Protozoan Diseases of the Reproductive Systems 660
- Vaginal Yeast Infections 660
- Trichomoniasis 662

22 Environmental and Industrial Microbiology

22.1 Microbial Ecology 672
- The Ecological Hierarchy 672
- Microbes in Earth’s Ecosystems 674
- Biofilms 676
- Clinical Application: A Potential New Therapy for Medical Biofilm Elimination 677

22.2 Biogeochemical Cycles 678
- The Nitrogen Cycle 679
- The Carbon Cycle 680
- The Phosphorus Cycle 681
- What a Microbiologist Sees: Habitat for Acidophiles 683
- The Sulfur Cycle 683

22.3 Bioremediation 684
- Microorganisms Used in Bioremediation 685
- Sewage Treatment 685
- Freshwater Treatment 687
22.4 Microorganisms Used in Manufacturing 687
- Products of Biotechnology 687
- Food Production 688
- Case Study: Bacon Beer 691

22.5 Safe Product Processing and Packaging 692
- Food Safety Regulations 692
- Chemical and Physical Controls in Food Production 693
- Canning 694
- The Microbiologist’s Toolbox: The Autoclave 696
- Microbial Control in Health Care Settings 696

Appendix A: Answers to Self-Tests 702
Appendix B: Physiological Reference Ranges 705
Glossary 708
Index 726