Contents

Preface xiii
About the Author xvii

1 Principles of Triaxial Testing
1.1 Purpose of triaxial tests 1
1.2 Concept of testing 1
1.3 The triaxial test 2
1.4 Advantages and limitations 3
1.5 Test stages – consolidation and shearing 4
1.5.1 Consolidation 5
1.5.2 Shearing 5
1.6 Types of tests 5
1.6.1 Simulation of field conditions 6
1.6.2 Selection of test type 12

2 Computations and Presentation of Test Results 13
2.1 Data reduction 13
2.1.1 Sign rule – 2D 13
2.1.2 Strains 13
2.1.3 Cross-sectional area 23
2.1.4 Stresses 24
2.1.5 Corrections 25
2.1.6 The effective stress principle 25
2.1.7 Stress analysis in two dimensions – Mohr’s circle 25
2.1.8 Strain analysis in two dimensions – Mohr’s circle 27
2.2 Stress–strain diagrams 28
2.2.1 Basic diagrams 28
2.2.2 Modulus evaluation 37
2.2.3 Derived diagrams 41
2.2.4 Normalized stress–strain behavior 48
2.2.5 Patterns of soil behavior – error recognition 49
2.3 Strength diagrams 51
2.3.1 Definition of effective and total strengths 51
2.3.2 Mohr–Coulomb failure concept 51
2.3.3 Mohr–Coulomb for triaxial compression 54
2.3.4 Curved failure envelope 55
2.3.5 MIT \(p-q \) diagram 57
2.3.6 Cambridge \(p-q \) diagram 59
2.3.7 Determination of best-fit soil strength parameters 60
2.3.8 Characterization of total strength 60
2.4 Stress paths 61
2.4.1 Drained stress paths 61
2.4.2 Total stress paths in undrained tests 61
2.4.3 Effective stress paths in undrained tests 61
2.4.4 Normalized \(p-q \) diagrams 66
2.4.5 Vector curves 68
2.5 Linear regression analysis
 2.5.1 MIT $p-q$ diagram 72
 2.5.2 Cambridge $p-q$ diagram 74
 2.5.3 Correct and incorrect linear regression analyses 75
2.6 Three-dimensional stress states 76
 2.6.1 General 3D stress states 76
 2.6.2 Stress invariants 76
 2.6.3 Stress deviator invariants 80
 2.6.4 Magnitudes and directions of principal stresses 81
2.7 Principal stress space 83
 2.7.1 Octahedral stresses 83
 2.7.2 Triaxial plane 84
 2.7.3 Octahedral plane 86
 2.7.4 Characterization of 3D stress conditions 87
 2.7.5 Shapes of stress invariants in principal stress space 89
 2.7.6 Procedures for projecting stress points onto a common octahedral plane 90
 2.7.7 Procedure for plotting stress points on an octahedral plane 96
 2.7.8 Representation of test results with principal stress rotation 97

3 Triaxial Equipment 99
3.1 Triaxial setup 99
 3.1.1 Specimen, cap, and base 99
 3.1.2 Membrane 103
 3.1.3 O-rings 105
 3.1.4 Drainage system 106
 3.1.5 Leakage of triaxial setup 112
 3.1.6 Volume change devices 113
 3.1.7 Cell fluid 113
 3.1.8 Lubricated ends 120
3.2 Triaxial cell 125
 3.2.1 Cell types 125
 3.2.2 Cell wall 127
 3.2.3 Hoek cell 128
3.3 Piston 128
 3.3.1 Piston friction 129
 3.3.2 Connections between piston, cap, and specimen 132
3.4 Pressure supply 133
 3.4.1 Water column 133
 3.4.2 Mercury pot system 134
 3.4.3 Compressed gas 135
 3.4.4 Mechanically compressed fluids 136
 3.4.5 Pressure intensifiers 137
 3.4.6 Pressure transfer to triaxial cell 137
 3.4.7 Vacuum to supply effective confining pressure 138
3.5 Vertical loading equipment 139
 3.5.1 Deformation or strain control 139
 3.5.2 Load control 140
 3.5.3 Stress control 141
 3.5.4 Combination of load control and deformation control 141
 3.5.5 Stiffness requirements 143
3.5.6 Strain control versus load control 143
3.6 Triaxial cell with integrated loading system 143

4 Instrumentation, Measurements, and Control 145
4.1 Purpose of instrumentation 145
4.2 Principle of measurements 145
4.3 Instrument characteristics 147
4.4 Electrical instrument operation principles 149
 4.4.1 Strain gage 149
 4.4.2 Linear variable differential transformer 151
 4.4.3 Proximity gage 153
 4.4.4 Reluctance gage 153
 4.4.5 Electrolytic liquid level 154
 4.4.6 Hall effect technique 154
 4.4.7 Elastomer gage 154
 4.4.8 Capacitance technique 155
4.5 Instrument measurement uncertainty 155
 4.5.1 Accuracy, precision, and resolution 156
 4.5.2 Measurement uncertainty in triaxial tests 156
4.6 Instrument performance characteristics 158
 4.6.1 Excitation 158
 4.6.2 Zero shift 159
 4.6.3 Sensitivity 159
 4.6.4 Thermal effects on zero shift and sensitivity 159
 4.6.5 Natural frequency 159
 4.6.6 Nonlinearity 159
 4.6.7 Hysteresis 159
 4.6.8 Repeatability 159
 4.6.9 Range 159
 4.6.10 Overload capacity 160
 4.6.11 Overload protection 160
 4.6.12 Volumetric flexibility of pressure transducers 160
4.7 Measurement of linear deformations 160
 4.7.1 Inside and outside measurements 160
 4.7.2 Recommended gage length 162
 4.7.3 Operational requirements 162
 4.7.4 Electric wires 163
 4.7.5 Clip gages 163
 4.7.6 Linear variable differential transformer setup 167
 4.7.7 Proximity gage setup 168
 4.7.8 Inclinometer gages 170
 4.7.9 Hall effect gage 171
 4.7.10 X-ray technique 171
 4.7.11 Video tracking and high-speed photography 171
 4.7.12 Optical deformation measurements 172
 4.7.13 Characteristics of linear deformation measurement devices 174
4.8 Measurement of volume changes 178
 4.8.1 Requirements for volume change devices 178
 4.8.2 Measurements from saturated specimens 180
 4.8.3 Measurements from a triaxial cell 189
 4.8.4 Measurements from dry and partly saturated specimens 192
4.9 Measurement of axial load
 4.9.1 Mechanical force transducers
 4.9.2 Operating principle of strain gage load cells
 4.9.3 Primary sensors
 4.9.4 Fabrication of diaphragm load cells
 4.9.5 Load capacity and overload protection

4.10 Measurement of pressure
 4.10.1 Measurement of cell pressure
 4.10.2 Measurement of pore pressure
 4.10.3 Operating principles of pressure transducers
 4.10.4 Fabrication of pressure transducers
 4.10.5 Pressure capacity and overpressure protection

4.11 Specifications for instruments

4.12 Factors in the selection of instruments

4.13 Measurement redundancy

4.14 Calibration of instruments
 4.14.1 Calibration of linear deformation devices
 4.14.2 Calibration of volume change devices
 4.14.3 Calibration of axial load devices
 4.14.4 Calibration of pressure gages and transducers

4.15 Data acquisition
 4.15.1 Manual datalogging
 4.15.2 Computer datalogging

4.16 Test control
 4.16.1 Control of load, pressure, and deformations
 4.16.2 Principles of control systems

5 Preparation of Triaxial Specimens
 5.1 Intact specimens
 5.1.1 Storage of samples
 5.1.2 Sample inspection and documentation
 5.1.3 Ejection of specimens
 5.1.4 Trimming of specimens
 5.1.5 Freezing technique to produce intact samples of granular materials
 5.2 Laboratory preparation of specimens
 5.2.1 Slurry consolidation of clay
 5.2.2 Air pluviation of sand
 5.2.3 Depositional techniques for silty sand
 5.2.4 Undercompaction
 5.2.5 Compaction of clayey soils
 5.2.6 Compaction of soils with oversize particles
 5.2.7 Extrusion and storage
 5.2.8 Effects of specimen aging
 5.3 Measurement of specimen dimensions
 5.3.1 Compacted specimens
 5.4 Specimen installation
 5.4.1 Fully saturated clay specimen
 5.4.2 Unsaturated clayey soil specimen

6 Specimen Saturation
 6.1 Reasons for saturation
 6.2 Reasons for lack of full saturation
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Effects of lack of full saturation</td>
<td>240</td>
</tr>
<tr>
<td>6.4</td>
<td>B-value test</td>
<td>241</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Effects of primary factors on B-value</td>
<td>241</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Effects of secondary factors on B-value</td>
<td>243</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Performance of B-value test</td>
<td>246</td>
</tr>
<tr>
<td>6.5</td>
<td>Determination of degree of saturation</td>
<td>249</td>
</tr>
<tr>
<td>6.6</td>
<td>Methods of saturating triaxial specimens</td>
<td>250</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Percolation with water</td>
<td>250</td>
</tr>
<tr>
<td>6.6.2</td>
<td>CO₂-method</td>
<td>251</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Application of back pressure</td>
<td>252</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Vacuum procedure</td>
<td>258</td>
</tr>
<tr>
<td>6.7</td>
<td>Range of application of saturation methods</td>
<td>262</td>
</tr>
<tr>
<td>7</td>
<td>Testing Stage I: Consolidation</td>
<td>263</td>
</tr>
<tr>
<td>7.1</td>
<td>Objective of consolidation</td>
<td>263</td>
</tr>
<tr>
<td>7.2</td>
<td>Selection of consolidation stresses</td>
<td>263</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Anisotropic consolidation</td>
<td>264</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Isotropic consolidation</td>
<td>267</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Effects of sampling</td>
<td>268</td>
</tr>
<tr>
<td>7.2.4</td>
<td>SHANSEP for soft clay</td>
<td>268</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Very sensitive clay</td>
<td>272</td>
</tr>
<tr>
<td>7.3</td>
<td>Coefficient of consolidation</td>
<td>272</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Effects of boundary drainage conditions</td>
<td>272</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Determination of time for 100% consolidation</td>
<td>272</td>
</tr>
<tr>
<td>8</td>
<td>Testing Stage II: Shearing</td>
<td>277</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>8.2</td>
<td>Selection of vertical strain rate</td>
<td>277</td>
</tr>
<tr>
<td>8.2.1</td>
<td>UU-tests on clay soils</td>
<td>277</td>
</tr>
<tr>
<td>8.2.2</td>
<td>CD- and CU-tests on granular materials</td>
<td>277</td>
</tr>
<tr>
<td>8.2.3</td>
<td>CD- and CU-tests on clayey soils</td>
<td>277</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Effects of lubricated ends in undrained tests</td>
<td>282</td>
</tr>
<tr>
<td>8.3</td>
<td>Effects of lubricated ends and specimen shape</td>
<td>282</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Strain uniformity and stability of test configuration</td>
<td>282</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Modes of instability in soils</td>
<td>284</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Triaxial tests on sand</td>
<td>284</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Triaxial tests on clay</td>
<td>290</td>
</tr>
<tr>
<td>8.4</td>
<td>Selection of specimen size</td>
<td>292</td>
</tr>
<tr>
<td>8.5</td>
<td>Effects of membrane penetration</td>
<td>293</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Drained tests</td>
<td>293</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Undrained tests</td>
<td>293</td>
</tr>
<tr>
<td>8.6</td>
<td>Post test inspection of specimen</td>
<td>293</td>
</tr>
<tr>
<td>9</td>
<td>Corrections to Measurements</td>
<td>295</td>
</tr>
<tr>
<td>9.1</td>
<td>Principles of measurements</td>
<td>295</td>
</tr>
<tr>
<td>9.2</td>
<td>Types of corrections</td>
<td>295</td>
</tr>
<tr>
<td>9.3</td>
<td>Importance of corrections – strong and weak specimens</td>
<td>295</td>
</tr>
<tr>
<td>9.4</td>
<td>Tests on very short specimens</td>
<td>296</td>
</tr>
<tr>
<td>9.5</td>
<td>Vertical load</td>
<td>296</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Piston uplift</td>
<td>296</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Piston friction</td>
<td>296</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Side drains</td>
<td>298</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Membrane</td>
<td>301</td>
</tr>
</tbody>
</table>
9.5 Buoyancy effects
- 9.5.5 Buoyancy effects (308)

9.6 Vertical deformation
- 9.6.1 Compression of interfaces (309)
- 9.6.2 Bedding errors (309)
- 9.6.3 Techniques to avoid corrections to vertical deformations (311)

9.7 Volume change
- 9.7.1 Membrane penetration (312)
- 9.7.2 Volume change due to bedding errors (317)
- 9.7.3 Leaking membrane (317)
- 9.7.4 Techniques to avoid corrections to volume change (319)

9.8 Cell and pore pressures
- 9.8.1 Membrane tension (319)
- 9.8.2 Fluid self-weight pressures (319)
- 9.8.3 Sand penetration into lubricated ends (319)
- 9.8.4 Membrane penetration (319)
- 9.8.5 Techniques to avoid corrections to cell and pore pressures (320)

10 Special Tests and Test Considerations

10.1 Introduction
- 10.1.1 Low confining pressure tests on clays (321)
- 10.1.2 Conventional low pressure tests on any soil (321)
- 10.1.3 High pressure tests (322)
- 10.1.4 Peats and organic soils (322)

10.2 \(K_0 \)-tests (322)

10.3 Extension tests
- 10.3.1 Problems with the conventional triaxial extension test (323)
- 10.3.2 Enforcing uniform strains in extension tests (324)

10.4 Tests on unsaturated soils
- 10.4.1 Soil water retention curve (326)
- 10.4.2 Hydraulic conductivity function (327)
- 10.4.3 Low matric suction (327)
- 10.4.4 High matric suction (329)
- 10.4.5 Modeling (330)
- 10.4.6 Triaxial testing (331)

10.5 Frozen soils (331)

10.6 Time effects tests
- 10.6.1 Creep tests (333)
- 10.6.2 Stress relaxation tests (333)

10.7 Determination of hydraulic conductivity (335)

10.8 Bender element tests
- 10.8.1 Fabrication of bender elements (336)
- 10.8.2 Shear modulus (337)
- 10.8.3 Signal interpretation (338)
- 10.8.4 First arrival time (338)
- 10.8.5 Specimen size and geometry (340)
- 10.8.6 Ray path analysis (340)
- 10.8.7 Surface mounted elements (340)
- 10.8.8 Effects of specimen material (341)
- 10.8.9 Effects of cross-anisotropy (341)
11 Tests with Three Unequal Principal Stresses
 11.1 Introduction
 11.2 Tests with constant principal stress directions
 11.2.1 Plane strain equipment
 11.2.2 True triaxial equipment
 11.2.3 Results from true triaxial tests
 11.2.4 Strength characteristics
 11.2.5 Failure criteria for soils
 11.3 Tests with rotating principal stress directions
 11.3.1 Simple shear equipment
 11.3.2 Directional shear cell
 11.3.3 Torsion shear apparatus
 11.3.4 Summary and conclusion

Appendix A: Manufacturing of Latex Rubber Membranes
 A.1 The process
 A.2 Products for membrane fabrication
 A.3 Create an aluminum mold
 A.4 Two tanks
 A.5 Mold preparation
 A.6 Dipping processes
 A.7 Post production
 A.8 Storage
 A.9 Membrane repair

Appendix B: Design of Diaphragm Load Cells
 B.1 Load cells with uniform diaphragm
 B.2 Load cells with tapered diaphragm
 B.3 Example: Design of 5 kN beryllium copper load cell
 B.3.1 Punching failure

References
Index